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)Demand for advances in the theoretical and experimental understanding of
high performance materials has provided the impetus to organize this
Workshop on 'Composite Material Response: Constitutive Relations and
Damage Mechanisms'., It was held at the Stakis Grosvenor Hotel in
Glasgow from July 30 31, 1987. Experts from six different countries
including Australia, Gre ce, Italy, Poland, United Kingdom and United
States were invited to present their most recent research findings and ideas
on composite material behaviour. Particular emphases were placed on the
damage mechanisms associated with mechanical, thermal and/or chemical
effects. Their influence on the ways with which constitutive relations
are formulated is relevant in quantifying the behaviour of application-
specific materials such as composites. Such a knowledge is particularly
lacking.

The need for more effective useof advanced materials was emphasized in
the Opening Address by Dr Fritz H. Oertel, Jr, who is Chief of Research
in the US Army Research Development and Standardization Group-
United Kingdom (USARDSG-UK). This Group grew out of the American,
British, Canadian and Australian (ABCA) war-time alliance and sponsors
research activities to the interests of the US Army and the appropriate
European/Middle Eastern/African Army or Institution. To be acknow-
ledged, in particular, is the support of this Workshop provided by the

,jUSARDSG-UK Physics/Mathematics Branch headed by Dr Julian J. Wu.
It provided an opportunity for evaluating the current as well as future needs
in advanced materials science and technology. ______,_

V,
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On behalf of the authors and participants, the efforts of Miss Alison
Shedden connected with organizing this Workshop are greatly appreciated.

Glasgow, Scotland G. C. SIH

G. F. SMITH
I. H. MARSHALL

J. J. Wu
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Microstructure and Damage Dependence of
Advanced Composite Material Behavior

G. C. SIH

Institute of Fracture and Solid Machanics, Lehigh University,
Bethlehem, Pennsylvania, USA

ABSTRACT

The macromechanical behavior of composite materials exhibits complex
dependence not only on the microstructure but also in the wa.,, with which
damage occurs. This is a load-time history dependent process, regardless of
whether composites are being used for their many unique behaviors in terms of
strength,fracture resistance, thermal properties, etc. Because the prevention
of mechanical failure is almost always, an important, if not critical,
requirement, damage accumulated from delamination, initiation and growth of
cracks in the fiber and matrix and at the interface becomes an important
consideration as the sequence offailure modes can affect the outcome. Many of
the material testing procedures developed for metals may not be valid because
each specimen, even though loaded uniaxially, possesses a unique behavior on
account of its highly nonhomogeneous microstructure and damage pattern.
Usage-specific is, in fact, a salient feature of composites that can be tailor-
made to satisfy certain performance requirements.

The prediction and/or quantitative assessment of composite material
behavior remain undeveloped. This is not surprising because the classical
theories of mechanics and physics are not conducive for analysing inhomo-
geneity arising from the material microstructure and nonuniform damage.
Notwithstanding such complexities, this communication will attempt to
address a basic feature of composite behavior, i.e. nonuniform energy dis-
sipation as a result of local temperature fluctuation. This is also related to
change in local strain rates and strain rate history being the direct cause of
microstructure inhomogeneity and damage. Load transfer characteristics as
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altered by processing across fiber/matrix interfaces or bonding surfaces in
laminates can alter the composite properties even when the same fibers and
matrix materials are used. There is the exchange of surface and volume energy
across an interface that involves the interaction of mechanical and physico-
chemical effects. The fluctuation of the local volume energy density dW/dV
and surface energy density dW/dA in composites would, therefore, be
regarded as the quantities of interest. They are related by the rate change of
volume and surface dV/dA that serves as a scaling length parameter and an
index related to the degree of homogeneity or inhomogeneity of the system.
Here, homogeneity includes the combined effect of material microstructure,
geometry and load type. Illustrative examples will be provided and discussed
briefly in connection with the technique of Electromagnetic Discharge
Imaging (EDI), a possible means for evaluating the mechanical, thermal and
chemical effects associated with composite material behavior.

1. INTRODUCTION

As modern structures and vehicles are required to perform under con-
ditions of high strength and toughness, combined with low weight,
composites are becoming the material of choice. By dispersing particles or
fibers of one substance in a matrix, or binder, of another, the constituent
elements or microstructures can be tailor-made to meet the performance
requirements. More and more of the components in military and commer-
cial aircraft, automobiles and sports equipment are made of composites.
Resistance to high temperature is another added feature of composites that
is so important to the design of rocket-motor components and missile nose
cones.

Composite behavior is complex because it depends on how the individual
constituents are combined. The overall mechanical/thermal/electrical
properties can differ widely even when composites are made from identical
raw materials but processed differently. This is because processing directly
affects the structure of the final product. In this context, structure refers to
geometric discontinuities such as defects and voids and molecular features.
Polymer matrix, for example, consists of small molecules joined chemically
in chains or networks of repeating units to form huge molecules with an
infinite variety of possible three-dimensional structures. The size, internal
arrangement, chemical connectivity and spatial distribution of the mole-
cules are controlled by processing. It is vital, therefore, to be able to quantify
the sequence of events which culminate in composite material damage. This
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requires a generalized approach that can uniquely and consistently identify
results at the atomic, microscopic and macroscopic scale. Material testing
methods developed for metals that invoke homogeneity and isotropy are
not adequate. Because a major portion of the useful life of composites
involves subcritical damage in the form of fiber breaking, matrix cracking,
interface debonding, delamination, etc., these mechanisms of failure cannot
be ignored in predicting performance. Composite specimens will respond
differently, depending on the combined interactions of load, size and
geometry, in addition to the inhomogeneous nature of the microstructure.

All substances are, in fact, inhomogeneous and anisotropic when they are
examined at the microscopic level. It is the sensitivity of their microstruc-
ture in responding to load that determines whether details at the lower scale
level need to be analysed or not. While homogeneity can be assumed for
most polycrystals deformed under normal loading conditions, the details of
their microstructures become increasingly more important when the
loading rate is slowed down to that of creep. (The grains in a structural steel
are made sufficiently small in comparison with the specimen size so that the
influence of microstructure entities can be adequately reflected via the
macroparameters such as yield strength, ultimate strength, etc. The same
can be done for composites if the size/time influence of the constituents are
appropriately suppressed for the given loading rates under consideration.)
Polycrystal metal structures are no less complicated than those in
compositt. Precise characterization of present-day composites that are
designed to ater their global response by microstructure effects necessitates
a knowledge of the way with which energy dissipates throughout the
inhomogeneous structure as it is being physically damaged. This involves
the continuous fluctuation of temperature as a result of the constant change
of volume with surface area, dV/dA, for each composite element, an effect
that has been neglected in the development of continuum mechanics
theories such as elasticity, plasticity, etc. (The assumption of letting dV/dA
vanish in the limit has been invoked in previous works' -" dealing with the
failure of composite systems. This has, in fact, excluded the thermal/
mechanical interaction or the mechanism of energy dissipation. Conven-
tional continuum mechanics theories are unable to predict the pheno-
menon of cooling/heating -" in specimens or structures as the mechanical
load is increased monotonically. Classical thermodynamics are also not
valid because reversal of heat transfer leads to a sign change in entropy.)

In order to distinguish the difference between the rates at which energy is
dissipated, say in a fiber and matrix, it is necessary to consider the exchange
of surface and volume energy. Thermal/mechanical interactions across the
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interface or near a defect also give rise to temperature change and high rates
of energy dissipation. To be emphasized in this work is the consumption of
energy in the composite damage process that is not only time dependent but
also varies from location to location. The size/time/temperature effect can
obscure the observation of composite material behavior when the same
event is examined at the atomic, microscopic and macroscopic scale. What
appears to be cooling and dilatation on one scale level may correspond to
heating and distortion on another level. Unless the fundamental hurdle of
material characterization is overcome, no confidence can be placed in
predicting the performance of composites. Composite damage analysis also
involves the nondestructive evaluation of thermal, mechanical and
chemical effects. To this end, advancements have been made on the
Electromagnetic Discharge Image (EDI) technique' 2.13 using high voltage
electrical discharge. This method is particularly suited for analysing failure
in composites. Changes in the microstructure, chemical composition, and
interface condition can be identified with the mechanical behavior of
composites so that a more precise distinction can be made between the
intrinsic and apparent material parameters at a given scale level. A primary
function of the EDI method is the evaluation of energy dissipated in various
different forms.

2. THERMAL/MECHANICAL INTERACTION:
FIBER, MATRIX AND INTERFACE

The thermal/mechanical/electrical behavior of composites is very much
a function of the reinforcing materials and a synergy between, say, the fibers
and matrix. When the fibers are stretched in the absence of the matrix, they
will react individually. That is, the fibers once broken, are unable to support
the load. If the fibers are embedded in a matrix that is more readily
deformable, load transfer from the fibers to the matrix can prevail even
when the fibers are broken. The choice of a matrix, therefore, determines
not only how a composite must be fabricated. An understanding of the load
transfer characteristics of the individual components in a composite is
necessary before examining the behavior of the complex system.

2.1. Fiber
There are presently many materials that can be made in the form of fibers.

Elements such as carbon, aluminum, silicon, etc., can be used to form
compounds in which atoms are joined by strong and stable bonds. These
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FIG. 1. Cooling/heating of 6061 -T6 aluminum specimen in tension at a displacement rate of
8.467 x 10 m/s.

compounds will exhibit different thermal/mechanical properties when they
are loaded mechanically. Figure 1 shows the temperature fluctuation, i.e.
E as a function of time t for a 6061-T6 aluminum specimen extended with
a displacement rate of 8467 x 10- i m/s. The specimen gauge length is
approximately 57 mm and the cross-sectional area is 3-81 mm2.Contrary to
the ordinary notion that the material would heat up when loaded, it
actually cools before returning to the ambient condition. The recovery time
is approximately 26 s and is loading rate dependent. This means that energy
dissipation is strictly rate dependent. It has been shown in Ref. 11 that the
onset of heating can be delayed to 200 s if the loading rate is reduced by one
order of magnitude. Dissipation has been known" - " to be small during
cooling and it increases at an extremely high rate when heating starts.
Therefore, mismatch of energy dissipation rates between the fiber and
matrix can be undesirable as it tends to decrease the effectiveness of load
transfer.

2.2. Matrix
If the same aluminum specimen discussed earlier was made of poly-

carbonate and extended at the same displacement rate of 8467 x 10 s m/s,
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FiG. 2. Cooling/heating of polycarbonate in uniaxial extension at a displacement rate of
8.467 x 10- m/s.

the resulting temperature as a function of time would be very different. 4

The results are displayed in Fig. 2 in which cooling terminates at
approximately 12 s and the heating portion of the temperature curve
attained only a gradual rise before increasing rapidly. There is a delay in
energy dissipation that is in contrast to the results in Fig. I for the
aluminum. The time interval associated with cooling/heating is sensitive to
changes in the molecular structure. This is illustrated by the difference of the
two curves labelled specimen A and B in Fig. 2. The temperature fluctuation
data also monitor the change in the chemical composition of the hardener
molecules and the curing conditions such that the network can be altered in
predictable ways, both experimentally and theoretically. Such a capability
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is made possible only by the energy density theory8 and can be used to
optimize the selection of the fiber and matrix material.

2.3. Interface
Because processing can vary the conditions at the interface, analytical

modelling would not be complete without addressing both the electro-
chemical and mechanical bonding properties. (The assumption that
displacements and stresses are continuous across the fiber and matrix is
obviously unrealistic and leads to errors that depend on the type of
loading.'") The former arises by wetting the solid surface with a fluid.
Bonding of the two phases is achieved through intermolecular forces.
Theoretical strengths of the order of W-10 MPa can result within
interatomic distances of a few Angstroms as shown schematically in Fig. 3.
(Actual strength of an interfacial bond is lower because the classical
theoretical treatment is overly idealized and is not able to include the
combined effects of material, geometry and load transfer.) The Van der
Waals bonds are slightly weaker with theoretical strengths of the order of
102-103 MPa and involve interatomic distances of 3-5 A. Mechanical
bonds are developed as a result of differential thermal expansion of the fiber
and matrix. A compressive environment is created that results in high
frictional adhesion. Compressive loading on an isolated filament in a glass
fiber/epoxy composite can result in a frictional bond of 106 Pa. This,
however, is spread over a much larger distance that is 4-5 orders of
magnitude larger than the chemical bond (Fig. 3). Minute defects such as
microvoids, microcracks, debonding, etc., can also prevail at the interface
that further complicate the state of affairs at the fiber/matrix interface. Even
though the initial interfacial energy states arising from electrochemical and

Electrochemical -,
-interface -3 xIO cm

rMatrix

I~ /Fiber

Microvoids Microcracks Debonding

-Mechanical .
interface - I0 cm

FIG. 3. Schematic of electrochemical and mechanical interface.
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mechanical bonding are essential, they alone are not sufficient for
characterizing the interface integrity and/or failure. The true nature of the
interphase depends simultaneously on the mechanics at a two-phase
boundary and rates of energy transfer that are application-specific. No
generalization is possible. Each case must be analysed separately according
to the specificity of the system.

The consideration of load transfer across interfaces becomes a major
issue for composites in structural applications. Unless the relations between
the overall bulk behavior of the composites and alleged interfacial response
are known, no design guidelines can be laid down. Depending on the load
type,15 interface properties will affect the composite behavior in different
ways. This is illustrated in Fig. 4(a) and (b) in which the interfacial energy

Compression

Interface Small interfacial

I energy fluctuation

(a) Compressive load

Shear I

Interfae Large interfacial

energy fluctuation

(b) Shear load

FIG. 4. Interfacial oscillation in energy due to loading: compression and shear.
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oscillated much more widely in shear than that in compression. The local
material elements respond at rates dictated by the properties of the two
adjoining phases and the morphology in the region near the interface.
Hence, the mutual synergistic effects must be regarded as unknowns and
determined theoretically. The fundamental understanding on this subject
has not been well developed. Apparent contradictions and/or inaccuracies
can result if the interface properties are assumed to be known as a priori.
This occurs even in the case of a single phase material where the same
constitutive relation is assumed to prevail at each point of the system.
(Conventional mechanics theories assume not only that constitutive
relations are known but they are the same at each point in the system. This
invalidates their application to problems where the local strain rates
undergo large changes.) The stress and strain relations at elements near
a boundary can differ widely from those inside a body.' They must be
determined separately for each element and each time step of loading. Such
an approach must be adopted for analyzing composite interface behavior.

Debonding of fiber/matrix interface should be distinguished from that of
delamination between the laminae in a layered composite structure (Fig. 5).
The amplitude of energy oscillation in delamination is considerably larger
than that associated with debonding. Since both normal and shear stress
may both be present, delamination can be best analysed by application of
the energy density function dW/dV The stationary values of dW/dV
consider failure by both excessive change in shape and/or fracture as they
simultaneously account for dilatation and distortion.

Enlarged view
of adhesive layer

Angle -ply layers

Oscillation of energy
in adhesive layer

FiG. 5. Delamination of a layered composite.

I'
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3. DAMAGE OF COMPOSITES

Composite failure can be best addressed in terms of damage over an area or
volume. Above all, the properties of the constituents as measured separately
must be correlated with the structural features of the composite. This
requires a precise knowledge of how the time dependent energy is
distributed and used to deform and damage the composite system.

3.1. Failure Mechanisms
Unlike the metals where failure may be dominated by the growth of

macrocracks, fiber reinforced composites fail in a cumulative fashion that
may involve a combination of different modes such as fiber breaking,
matrix cracking and fiber/matrix interface debonding (Fig. 6). Each of the

Debonding Fiber

Matrix

cracking

FiG. 6. Failure modes in unidirectional fiber reinforced composite.

modes may occur at a different time. Hence, the energy associated with

creating new surfaces in a unit volume at a given instance may consist of(dW~=~{dW 
ddW (W"jdA Jp ( LkdAf + (d if/r + ( rJ

in which the subscripts f, m and f/m stand, respectively, for the fiber, matrix
and fiber/matrix interface. (Other forms of surface energy associated with
damage may be involved such as (d W/dA). that arises due to delamination
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or breaking of the adhesive in a layered composite.) Any one of the
component surface energy densities, say (dW/dA)t/m, may be zero within
a certain time interval if debonding does not occur. In other words, the
proportion of fiber breaking, matrix cracking and fiber/matrix debonding
changes with time. What is available to create new damage surface at the
next time increment is (d W/dA)*. Hence, the total surface energy density is

dW (dW (dW (
dA d- ), \A ,/ (2)

The damage accumulated in a unit volume of composite element can be
obtained from

(dW =(dV -- , i (3)

with dW/dV being the area under the true stress and true strain curve. The
rate change of volume with surface, (d V/dA)i, is made proportional to the
respective slopes of the stress and strain curves. In this way, the energy state
for each composit, element can be uniquely determined and identified with
data that are obtainable from uniaxial tests. This is accomplished by
referring the components (d W/dA)4, (d W/dA), and (d W/dA), in Fig. 7 to the

y

Ioc

,0 dW

0IG 7. 0ceai of a(ntvlmeoopsTeAnt
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damage planes such that

A() = B(d) - =C(dW (4)

The parameters A, B and C are determined by performing three different
uniaxial tests along the axes of symmetry for the composite system. In this
way, the constitutive relation for each composite element will be derived
rather than assumed as it is now being done by the classical approach.

Thresholds for characterizing the integrity of composite systems can thus
be established by considering the rate at which the volume and surface
energy density approach their respective critical values. Because of eqn. (4),
it suffices to consider (d W/dA),. Failure of composite elements is assumed
when

(d W' >(d W\ dW (dW o dW (dW 5

dVA- dV ~ dV

and/or

-d-V >( - ; (d-A d W) or -d <d W) (6)

\dV ,/ WV J., ) dAJ kdA) XdA ,

Depending on the rate of load transfer in the composite, the exchange of
surface and volume energy density can vary over a wide range as indicated
in eqns (5) and (6) so that failure mechanisms involving fiber breaking,
matrix cracking, interface debonding, etc., can be quantified in terms of
temperature change, energy dissipation and the rate change of volume with
surface.

Related to (dW/dA)p and (dW/dA)* are the quantities (dW/dV)p and
(dW/dV)* which are, respectively, the dissipated and available volume
energy as defined in Fig. 8 such that

dW (dW' (dw'(7
dV dV W(7)

Note that (d W/d V)P or , is the area oypq and (d W/d V)* or sI the area pgq.
The path of unloading is determined analytically in the energy density
theory. It is of interest to point out that energy dissipation in composite
specimens has been measured experimentally.16 (One of the experimental
curves for Q in Ref. 16 became negative which is a physical impossibility
and obviously caused by error in measurement.) It, of course, must be



Advanced Composite Material Behavior 13

f

M

Uj dW
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Unloading
Path

I I

TRUE STRAIN

FIG. 8. Schematic of true stress and true strain.

positive definite and increase monotonically with time, i.e.

-9 0; d- 0 (8)

The method of Electromagnetic Discharge Imaging (ED]) can also be used.
Once -9 is known, the temperature 0 can be obtained from

AE ,AV As
W d-A A/Ae9

in which As is the increment of strain. It can be referred to the plane of
homogeneity (this is the plane defined in Fig. 7 such that (dW/dA)i for
i = , r, are related as shown in eqn. (4)) with As, being the equivalent
uniaxial incremental strain for a multiaxial stress or strain state.

Equation (9) has been used successfully for determining many of the

previously unexplained thermal/mechanical interaction effects" - " in
isotropic and homogeneous materials. It applies equally well to composites.
The quantity is not equal to the temperature T defined by classical

thermodynamics. It is equal to T only when all energies are dissipated in the
form of heat Q. In general, 2 is not equal to Q. The strain rate of energy
dissipation A(/A can be associated with the latent heat in classical
thermodynamics for determining phase transformation. Again, only when
p--Q will the following relation hold:

--- . T-- = T - (10)
As AV Av

isotroi an homeneou mails.Ip eulywl t opsts
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Here, AQ is the heat required per unit mass of substance in changing the
thermodynamic state from the temperature T to T+ AT and Av is the
change of specific volume. The corresponding change in entropy is Ay.
Phase transformation is a rate dependent process, an effect not considered
in classical thermodynamics.

3.2. Characterization
A unique characterization of microfailure mechanisms in composites

can be made by specifying the quantities A V/AA, AO and A., all of which
can be measured individually and independently. Their combination can
uniquely determine any changes in the composite microstructure. There
are no difficulties at present in measuring AV/AA via a knowledge of
the displacement field and local temperature changes within + 10- 3 to
+ 10- 4 K in microelements having linear dimensions of 10-2_ 10- 3 cm.
The response time of the electronic instruments must be adjusted in
accordance with the loading rate that governs the way with which the
material microstructure reacts. A major challenge is the detection of A2.
Being developed at the Lehigh Institute of Fracture and Solid Mechanics is
the electromagnetic discharge imaging (EDI) technique. 1 It involves
accelerating the electrons surrounding the object or specimen by an
external field such that the air molecules are ionized to enhance an
exponential growth in the number of electrons and positive ions causing an
avalanche.

To fix ideas, consider the composite system in Fig. 9 consisting of three
different types of microfailure, namely, fiber breaking, matrix cracking and

rMcroelement

Microelement

E - axA6yI0-2 to 10- cm

UE Fiber breaking

Interface debonding

cracking

X L"0.1 cm

FIG. 9. Hypothetical microfailure in fiber reinforced composite.
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fiber/matrix debonding in addition to the texture of fiber and matrix.
A sufficient number of fibers is assumed to contain in the macroelement of,
say Ax = Ay = 10 t cm, such that the microfailure response can be reflected
by the time-dependent macroscopic parameters. The state of affairs at the
microscopic level is much more complex because microheterogeneities are
now of the same size order as the microelements, say Ax=Ay= 10-2_
10- 3 cm. Table 1 outlines the various combinations. The variations of

TABLE I
A hypothetical characterization of microelements for a fiber reinforced composite

at time 1P

Microelement type (A V/AA)4 A@ AG

Matrix Slightly above Slightly below Slightly below
Fiber Above Below Above
Interface Slightly below Slightly above Near average
Fiber/matrix Near average Near average Slightly above

AV/AA, AE and A e for the four different types of microelements can be
compared with the average values obtained by considering all the
microelements in the macroelement. The loading at the instance tp may be
such that A V/AA and Af/ for the undamaged composite element are only
slightly above the average while AE is slightly below. This is illustrated in
Figs. 10(a)-(c). For the element damaged by fiber breaking and matrix
cracking, the deviations of AV/AA, AE and Af? from the average may
retain the same trend but become more pronounced as shown in Figs. 11 (a)
-(c). In the case of interface debonding in Figs. 12(a)-(c), AV/AA may be
lower and AO higher than the average. This can be accompanied by

I

j-Average eAveragee

,a 69 Aveage

I ,/

0 to  0 p t 0 Ip t

(a) Volume to surface change (b) Temperature (c) Dissipation

FIG. 10. Time response of undamaged composite microelement.
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I , ,/Average

LI

0 tp t 0 tp t 0 tp t
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FIG. 11. Time response of composite microelement damaged by fiber breaking and matrix
cracking.
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FIG. 12. Time response of composite microelement with interface debonding.

a higher than average dissipation. Each microelement will exhibit a unique-
ly different microstress and microstrain response even for the same
microstructure detail because the load distribution is, in general, not
uniform.

Microstructure change can also take place by phase transformation. This
rate process depends on the strain rate dissipation energy density A9/A& in
eqn. (10) at a given temperature E. Initiation of phase transformation can
be identified with the reversal of curvature of the .*-curve. The corres-
ponding time tq is shown in Fig. 13(a). The values of (A9/AE)q and eq
at tq can thus be obtained from the curves in Fig. 13(b) and (c), respectively.

In this way, the distribution and change of the different phases at a given
location can be assessed analytically and experimentally.

3.3. Scale of Observation
The transient character of size/time/temperature interaction has eluded

those working in composite materials. Failure modes observed at one scale
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FIG. 13. Assessment of local phase transformation from the .A'-curve.

level may differ from that seen at another level and they are further com-
plicated by changes in loading rates. In general, dilatation/distortion and
cooling/heating tend to flip-flop as the scale level of observation is altered;
depending, of course, also on the time response. The fundamentals of this
alternating mechanism are discussed in Ref. 18 and will only be mentioned
briefly in relation to an element dominated by macrodilatation and another
by macrodistortion as shown, respectively, by Figs. 14(a) and (b). (The
combination of size/time/temperature data are selected arbitrarily for this
discussion. Actual values for uniaxial tensile and compressive metal
specimens have been obtained and can be found in Ref. 19.) These two
elements are necessarily located at different locations of the same system.
To be emphasized in Fig. 14(a) is that macrocooling and macrodilatation
for response times of 1-10s correspond to microheating and micro-
distortion when the same event is viewed within the time interval of
10-2-10 - ' s. (Macro refers to dimensions of 10-3-10-2cm; micro to
10-'-10- - cm; and atomic to 10- 6-10- 8 cm. The size/time/temperature
scale can shift depending on the loading or local strain rate.) Disturbances
at the atomic scale refer to even smaller response time and temperature
fluctuation. The situation for the element in Fig. 14(b) is opposite to that in
Fig. 14(a). What was macrocooling now becomes macroheating. The same
applies to the micro- and atomic-scale together with the corresponding
time response and temperature. Scaling of size/time/temperature must be
assessed quantitatively such that seemingly different behavior of the same
failure process when viewed at the atomic, microscopic and macroscopic
level can be related uniquely by the three variables mentioned earlier.
Microstructure change must be addressed in its entirety with reference to
the specimen response. Whether its influence could be adequately reflected
by the macroscopic variables or not depends on the specific application.
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FIG. 14. Size/time/temperature response of element at different scale level. (a) dominated by
macrodilatation and (b) dominated by macrodistortion.

4. ELECTROMAGNETIC DISCHARGE IMAGING:
NONDESTRUCTIVE EVALUATION

Because of the complex nature of composite failure behavior, a variety of
analytical models have emerged in an attempt to explain the different
failure modes. Since no unified treatment has come forth, damage
inspection procedures have relied solely on the development of hardwares
with the assumption that the data related to debonding, fiber and matrix
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degradation, etc., will eventually be understood and analysed by theories.
Among the techniques used are ultrasonics, radiography, acoustic emis-
sion, thermogtaphy, eddy current and a host of others. Such a procedure
has been loosely referred to as Non-Destructive Testing (NDT). What is
urgently needed is, of course, a consistent way of assessing composite
damage so that the seemingly different failure modes can be weighed on
a common basis. There is no other way for qualifying the integrity of
composite materials and structures.

Damage being a time-rate dependent process is more widely spread
throughout the composite simply because the load reacts more sensitively
with material inhomogeneity. The idea of NDT is to correlate the difference
between the emitted and received signal with the size and location of
damage. Those energies that are already present within the system may also
be released during the damage process to interrupt the NDT signal. The
unique identification of energy dissipation rate with failure mode is
a prerequisite for the quantitative assessment of damage, i.e. the quantity
d!/dt or those in eqn. (1) involving d(d W/dA)f/dt, d(d W/dA)Jdt,'etc. The
Electromagnetic Discharge Image (EDI) technique12 3 commonly known
as Kirlian photography, is particularly suited for incorporating the energy
density theory.' (This technique has been used extensively in the USSR in
NDT and is rarely publicized. Preliminary efforts made by the US Navy
and Lawrence Livermore Laboratory lacked the theoretical support in
NDT application.) Utilized in the process is a high-voltage electrical
discharge field. Electrons with the specimen are accelerated and multiply
exponentially. Streamers are thus created that move at speeds of 107 - 10'
cm/s. In air, at high field strength, the streamers are blue while a reddish-
purple glow appears in low electric fields. The intensity, color and pattern of
the discharge image can be recorded photographically or digitally and
identified with the mechanical, thermal, chemical and electrical disturb-
ances in composites as they are damaged. Mechanical discontinuities in the
range of 10-'-10-6 mm can be detected. Such a wide range of detection
capability is unmatched by the other conventional methods. The flow chart
in Fig. 15 shows how the available (or dissipated) energy is monitored by
ED[. A laboratory EDI model has been designed by the Institute of
Fracture and Solid Mechanics at Lehigh University. The combined
thermal, mechanical, chemical and electrical effects are recorded every-
where on a specimen as indicated in Fig. 16(a). Spectral analysis of the pixel
can then be made to obtain the optical intensity as a function of radiation
wavelength (Fig. 16(b)). For each radiation wavelength 2A, the optical
intensity 1, can be isolated and identified with a given energy level Ui. This
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is accomplished by means of a plasma spectral analysis, the results of which
are shown schematically in Fig. 17(a)-(c). The results can be further
processed and displayed by contour plots in two or three dimensions as
illustrated in Fig. 18 by which the individual thermal, mechanical, chemical

UV)

zz z I

0 Ui ENERGY LEVEL 0 Uz ENERGY LEVEL OU 3 ENERGY LEVEL

(a) Energy U, (b) Energy U2  (c) Energy U.

FIG. 17. Variations of intensity with energy level.
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FIG. 18. EDI contour output.

or electrical effect can be sorted out. The color, intensity and distribution of
the contours provide information on the location and magnitude of the
stationary values of the energy density whose relation with material
damage has been discussed earlier. These contours will change as a function
of time, if load is present and hence the influence of time-rate dependency on
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damage can also be evaluated. To be more specific, oscillation of the
electrochemical bond energy may be displayed by contour plots in
a two-dimensional space. Refer to Fig. 19 in which contours with high and
low energy densities represent fluctuations in the electrochemical forces.
They can be measured by the EDI technique and calculated by the energy
density theory.' As the scale of investigation is enlarged near the

Fiber in matrix

Electrochemical Enlarged contours of
interface energy density

energy density

FIG. 19. Schematic of electrochemical interface energy density contours detected by EDI.

fiber/matrix interface, stationary values of the mechanical and thermal
energy density can be obtained in the same way. The same theoretical and
experimental method must be applicable to cover the range of energy
dissipation rates that occur in composite material damage.
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Failure Initiation in Composites from Perfectly or
Partially Bonded Rigid Inclusions
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Xanthi, Greece

ABSTRACT

An analysis of failure of composites originating from rigid inclusions is
undertaken. The following cases are considered: (i) inclusions with cuspidal
points embedded in an elastic matrix and (ii) inclusions partially bonded to
the matrix. In the first case failure initiates from the cuspidal points, while in
the second case from the tips of the interfacial crack which coincides with the
unbonded part of the inclusion due to the existing stress singularity at these
points. A closed form solution for the problem of partially bonded inclusions
is obtained by using the conformal mapping technique of the complex variable
theory of elasticity and reducing it to a Hilbert problem. Results are obtained
for special inclusion shapes including the fiber, the hypocycloidal, the
astroidal, the square and the triangular inclusion. The strain energy density
theory is used to study the failure of the composite and the critical load and
initial fracture angles are determined.

1. INTRODUCTION

Composites made up of a soft matrix and stiff particles are analysed
regarding their mechanical behavior along two distinct approaches: the
macro-approach and the micro-approach. The macro-approach considers
the composite as a homogeneous system which has the overall material
properties of the macrostructure and applies the principles of continuum
mechanics of homogeneous (isotropic or anisotropic) materials. The

25
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micro-approach takes into account the detailed geometrical and physical
properties of the constituent materials and models the real system by
a simpler one. The approach chosen in the analysis of composites depends
on the nature of the problem and the objective of the study.

In the analysis of composites within the framework of the micro-approach
certain idealizations referred to the geometry and the properties of the
constituent materials are usually made. Thus, the filler particles are
simulated by bodies with simple geometrical shape, like spheroidal,
ellipsoidal or cylindrical. Furthermore, when their modulus of elasticity is
much higher than the modulus of elasticity of the matrix the particles are
considered stiff.

In many composites the reinforcing constituents are of irregular shape
with sharp angles, like the various inorganic fillers, the metal or boron
filaments, the aggregate or sand particles in concrete. In such cases in the
sharp angle corners, high stress concentrations develop and therefore they
are nuclei for the generation of cracks and slip bands leading to failure.
A commonly observed failure mode of multiphase ,uaterials is the
debonding of the different phases due to manufacturing and/or loading
conditions, thus forming interfacial cracks. This is usually encountered in
concrete where cracks are formed along the boundaries of the aggregates
which are embedded in the mortar.

In the present communication in an attempt to model the failure
behavior of composites originating from rigid inclusions within the
framework of micro-approach the following two problems are studied:

(i) Rigid inclusions with cuspidal points along their boundaries embed-
ded in an elastic matrix. In such cases high stress concentrations are
developed in the vicinity of the cuspidal points which constitute
nuclei for failure initiation.

(ii) Rigid inclusions of general shape partially bonded to an elastic
matrix. The unbonded part of the inclusion constitutes an interfacial
crack from which failure of the composite starts.

In both cases the stress field in the composite is first analysed and it is
then coupled with an appropriate failure criterion. Due to the importance
of the problem elasticity solutions of a number of geometrical configur-
ations of inclusions perfectly or partially bonded to a matrix have appeared
in the literature. Panasyuk et al. studied the case of a rigid inclusion with
cuspidal points on its boundary embedded in an elastic matrix. They found
that the stress field in the vicinity of the cuspidal points presents an inverse
square root singularity and it is expressed in terms of two stress
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concentration factors. The problem of a rigid inclusion partially bonded to
an elastic matrix has been studied by various researchers.2 - 'o Circular,
elliptical and general shaped inclusions have been considered and attention
has been paid to the neighborhood of the ends of the unbonded part of the
inclusion.

In this work the failure of composite plates containing a perfectly or
partially bonded rigid inclusion in an elastic matrix is analysed. A general
solution for the stress and displacement field is obtained for a curvilinear
inclusion with an interfacial crack using the method of conformal mapping
in conjunction with the analytic continuation of the complex potentials.
The problem is reduced to a Hilbert problem for one of the complex
potentials and general formulae for the determination of the various
unknown coefficients of the solution are given. Special cases include the
square and the triangular inclusions. The results of the stress analysis are
combined with the strain energy density failure criterion. 1 ' 12 The critical
load for fracture initiation and the more vulnerable failure sites are
determined. The failure characteristics of the composite as influenced by the
type and geometrical configuration of the inclusion, the material properties
and the type of loading are disclosed.

2. RIGID INCLUSIONS WITH CUSPIDAL POINTS

2.1. The Stress Field
Consider a rigid inclusion with a cuspidal corner 0 perfectly bonded to

an infinite isotropic elastic plate which is subjected to a system of stresses at
infinity (Fig. 1). A reference frame of Cartesian coordinates is attached to
the point 0 with the x-axis along the tangent of the boundary of the in-
clusion at 0. The local stress field in the vicinity of the point 0 is given by:1

6~ ~-=k5 COS -+ (2K + 1) COS ]k,[5 sin +(2K - 1) sin 301
1 0

ae 4r 1 ki3 COS - -(2K +1) COS ]- k,[3sin9-(2K - 1)sin '0

42rL L 2  2 2 2

where the coefficients k, and k2 are independent of the coordinates r, 0 and

is
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FIG. 1. Geometry of a general shaped inclusion with a singular corner 0 embedded in
a matrix.

depend only on the loading conditions, the material of the plate and the
geometrical shape of the inclusion at the cuspidal corner. In the above
relations, K = (3- v)/(1 + v) or K = 3- 4v for plane stress or plane strain
conditions respectively, with v representing the Poisson's ratio of the
material of the plate. Note the inverse square root singularity of the stress
field near the point 0.

Failure of the composite plate initiates from the cuspidal point 0 due to
the high intensification of the stress field around this point. For the
determination of the critical failure loads and the fracture path use is made
of the minimum strain energy density criterion.

2.2. The Minimum Strain Energy Density Criterion
Failure initiation from the cuspidal point of the inclusion is described by

the minimum strain energy density criterion proposed by Sih' 1.12 and used
for the solution of a host of mixed-mode crack problems by Gdoutos. 13

The fundamental quantity for unstable fracture is the strain energy
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density factor S defined by

dW (2)S =r-(2
dV

where dW/dV is the strain energy density per unit volume and r is the
distance from the cuspidal point. For the plane elastic problem dW/dVis
expressed by

dW I [(K+ 1Xo-r + ao) 2 _-2(a 2e'-%)] (3)

where u represents the shear modulus.
It is assumed that the fracture path from the cuspidal point of the

inclusion follows the direction of minimum strain energy density factor,
defined by

as 02S
- =0 - > 0 (4)

Unstable fracture occurs when the minimum value Smi. of S becomes
equal to a critical value Sr which is a material constant, that is

Smtn = Sc, (5)

Relations (4) define the fracture path originating from the cuspidal point,
while eq. (5) gives the critical load.

From eqns (1)-(3) is obtained

S = a1 k +2a12kIk 2 + a22k (6)

where the coefficients aij (i,j = 1,2) are given by:
20 2

16pua1 =2(K- 1)cos2 +K 2 +(2K + 1)cos2 0
2

16pua12 =- [(K - 1) + 2KCOS 0] sin 0 (7)

16Aa 22 = 2(K- 1) sin2 + K2 -(2K- 1) cos 2 0

The minimum strain energy density criterion is used for the deter-
mination of fracture of a composite plate with a linear, an astroidal and
a hypocycloidal inclusion.

2.3. The Linear Inclusion
A rigid rectilinear inclusion of length 21 is embedded in an elastic plate
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which is subjected to a uniform uniaxial stress a making an angle f# with
the axis of the inclusion. The stress concentration factors k, and k2 are given
by1

k -1+cos 2)
(8)

k2 = - sin 2fi
2K
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FG. 2. Variation of the normalized critical stress of fracture cr /(I164liSc, )/2 for the case of
a fiber inclusion versus its orientation angle P according to the minimum strain energy density

criterion.
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From eqns (4) - (7) the fracture path and the critical stress a, for unstable
fracture of the composite plate are obtained. Figure 2 presents the variation
of the normalized critical stress a, versus the inclination angle of the
inclusion fP for various values of the material constant K. Note that for K = 1,
a, is symmetrical with respect to f = 450 for which ac, becomes infinite. For
K= 1"4 and 1.8, ar becomes maximum in the interval 0 < fl < 90, while for
the remaining values of K it takes its maximum value for fP=90' . The
variation of the initial fracture angle 0. is shown in Fig. 3.

2700

2400 "1
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to18 0 °

12d

00 150 30 450 60 °  75 96p.-.

FIG. 3. Variation of the fracture angle 0o versus the angle P of the orientation of the fiber
according to the minimum strain energy density criterion.
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2.4. The Astroidal Inclusion
An astroidal inclusion is circumscribed by a circle of radius a and it is

referred to a reference frame Oxy with 0 coinciding with the center of the
circle and the singular corner j--0 lying on the x-axis. The equation of the
inclusion with respect to the frame Oxy is given by

3a. I C,[ - 3 (9)

with z = re'O and C = ei .
If P is the angle that the applied stress or subtends with the x-axis, then the

k, and k 2 stress concentration factors are given by'

=Z3a K K-I 3K .
k'j) -2+ cos (irj- 2fl)i

1 4K [2 Kcf

k(j) 134a or 3- sin (nj - 2fl) (10)

2 4 0 3K-lI

with j = 0, 1, 2, 3 for the four cuspidal points of the inclusion.
Because of the existing symmetry only the critical fracture stresses

O( /l from the pointsj = 0 andj = 1 are determined. Fracture of the composite
plate starts from the more vulnerable cuspidal point which has the smaller
critical stress. Figure 4 presents the variation of the dimensionless quantity
acr(3a/256PuSc,)12 versus angle f#. Regions where fracture starts from either
of the cuspidal points j = 0 or j = 1 are separated by a dotted line.

2.5. The Hypocycloidal Inclusion
The hypocycloidal inclusion circumscribed by a circle of radius a and

referred to a reference frame Oxy with 0 coinciding with the center of the
circle and the Ox axis being the axis of symmetry of the inclusion is
described by the following equation.

2az 1 2"

3 2!

with z = reO and =e"6 .
If f is the angle that the applied stress a subtends with the x-axis, then the
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FIG. 4. Variation of the normalized critical stress of fracture U,,(3a/256gS.,)'12 versus angle
P for the case of an astroidal inclusion according to the minimum strain energy density
criterion. Regions where fracture starts from either of the sorners j = 0 or j = I are indicated.

k1 and k2 stress concentration factors are given by

1 h a Ki osI - tei usoki) 3K + o j-2) (12)
-,/ -2a o7rk~j) sin 2

with j = 0, 1, 2 for the three cuspidal points of the inclusion.
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As in the previous cases the critical stress a,, and the fracture angle 00
from the more vulnerable cuspidal point of the inclusion are determined.
The variation of the quantity ac,(a/72puSc,)'1 2 versus angle f for fracture
initiation from the cuspidal points j 0 and j 2 is shown in Fig. 5.

1.0 Y a
a;

0

0.9

0
Cr IA

0.8 K " z 0

'0

C-i

0 100 200 300 400 5000-.

FiG. 5. Variation of the normalized critical stress of fracture aU,(a/72pScr) 2 versus the
orientation angle of the inclusion fP for the case of a hypocycloidal inclusion. Regions where

fracture starts from either of the corners j = 0 or j = 2 are indicated.
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3. PARTIALLY BONDED RIGID INCLUSIONS

3.1. Statement of the Problem and Hilbert Formulation
Consider a rigid curvilinear inclusion perfectly bonded to an elastic

infinite matrix except from a part As of its boundary forming an interfacial
crack (Fig. 6). Denote by AD the bonded part of the inclusion boundary, and
by K and u the elastic properties of the matrix. A system of uniformly
distributed principal stresses T and N. is applied at infinity where the
direction of T makes an angle qp with the x-axis.

1

T, /

FIG. 6. Geometry of a rigid curvilinear inclusion partially bonded to an elastic matrix and its
conformal mapping on to the unit circle.

The matrix occupying the z-plane is mapped in the infinite region 1: of the
C-plane bounded by the unit circle r by means of the function z = m(C)
which has the form

z=R C4, + + +- (13)

where R is a real and bl, b2, ..... b. are generally complex constants. The
values of these constants are determined so that the contour A in the
z-plane corresponds to the circumference I of the unit circle in the -plane.
The positive sense of describing the contour A is chosen to be clockwise so
that the region S remains on the left when moving in the positive direction.
Putting

=e4(cos I + i sinti) (14)
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circles of radii I - e€o and straight lines q = no in the C-plane define an
orthogonal curvilinear coordinate system (4, n) in the z-plane. Denote by
t =r1 ei3 and t 2 =r 2e0 2 the tips of the interfacial crack A, which are
mapped on the unit circle r at points or, =e i° and o2 =e W2.

Assuming that the crack lips are stress-free the boundary conditions of
the problem take the form

u(a) + iv(a) = iem(a) aer (15)

au( O) + ior(a) = 0 aer s  (16)

where u and v are the Cartesian components of the displacement, a,, and
o, denote stress components refered to the system ( , nl) and e represents the
rotation of the inclusion.

Using the complex-variable formulation of the plane elastic problem for
curvilinear boundaries"' eqns (15) and (16) give the following equations

W0( (a)a) = 0 aer s  (17)

Wo(a) + W0(a) = 4ipsm'(a) aErD (18)

for the complex function W(C) = m'(C) W() where W(C is the usual complex
potential of the theory of elasticity. Wo0 (a) and W0 (a) denote the limit
values of Wo(C) as C tends to a from L and R respectively, where L represents
the image region of the matrix and R the circular hole in the C-plane.
Equations (17) and (18) constitute a nonhomogeneous Hilbert problem
with line of discontinuity the arc rF described in a clockwise sense. It is
obtained for the unknown function Wo(C) (Ref. 14)

W(C) =4x(() + X(C)R(C) (19)

where

1(0) = m'(C)da (20)
27ri fr. XL(aXa - C)

R(C)O= (AIC + A.) + -+ -- +... + A-(P+-- -(21)
C C 2+ C P+

X(O (C a2) (22)
(C-a ,

T=25+iA, (23)

I n il •• il li m mmlili W iI 2a
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The function X(C) is the Plemelj function of the problem and is
holomorphic in the whole 4-plane cut along the arc FD on which
Xt(a)=-KXL(o). Only the branch of the function X(C) for which
lim _ [,jX(C)] = 1 will be considered in the sequel.

In calculating the integral I(C) it is observed that the function
F(4) = m'(C)/X(C) is holomorphic in the whole plane cut along I'D except at
the points = oo and = 0 at which it has poles of orders I and (p+ 1),
respectively. Thus, the principal parts of F(), g (4) and g2(C) at C = 00 and

=0 will have the form

g1(C)=S 1C+S0  (24)

9 C" + + (25)

Using a contour A surrounding the arc FD (Ref. 14) and observing that on
SrF) X(0)= KXL(a) the following is obtained for the integral I(C)

1(C) = K F(C)da (26)
( =27ri(1 + K) fAa - C 26

which by the well-known properties of the Cauchy integral gives

K m'()1
1(C)= f + - g 2(0] (27)

Introducing this value of I(C) into eqn. (19) we obtain for the function

WO

W0(C) = &[m'(C) - C g(4) + g2(C)]X(C)] + R(C)X(C) (28)

where

4ipe,
9= -i+ (29)

Equation (29) gives a closed form solution for the unknown function
W0(C) from which the stress and displacement field are determined.

3.2. Determination of the Unknown Coefficients
The unknown coefficients A 1, A0, A - 1, A - 2 .. , A (Po + ) of the function

R(C) and the rotation e of the inclusion are determined from the conditions
that the complex potentials of the problem should be holomorphic in the
region L of the C-plane and have a particular behavior at infinity. After
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lengthy calculations there is obtained' 5

AN + T (30 4i)- Ao2 2 + A ) D 2

where e. is the rotation at infinity, while the (p + 1) coefficients A_ 1, A - 2,

A p+ ) are determined from the following (p + 1) equations

l1,+ 1-pKP=0

D,-(p- I)K, =0 (31)

3-2K 2 = 0

, 2 -KI =R(N. - T)e 21 4'

91 =0

iM+ N'- _ N
B0 + K - r1 - tR - )e

where M is the moment of the stresses applied on A about the origin, N' is
a real constant, and

Am= Y A_(m+s)ds (32a)

Bo=Ir R- YS-d. +, Yo A-fsd. (32b)

p-MiKm= F T-sip-m-s'(m= - 1, 0, 1, .. ,p) (33)

3=0

T_,= 5,p_ (34)
i-i

Tp_.=F-_.+ -kbkT-,+,+,.(m=2, 3,.....(p+l))

k= I

with

b-l=l b0 =0

e,=- L (m- l)Rb, _1 1 S, .D Y
-= S=1
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D(01) = U(36a)(1 - O3) ( - 0)62Y'

DP + I )(0) (p+l)D '"(O) Df)(0)
(P+ 1)! (p+l)! p- (36b)

T,+ (37)
X(k)(O) (38)

dk =(38)

Pp
X(P +)(O) = k-=O( k )X(P - k)(O)O(k)( 0 ) (39a)

X(O) =e A 2x - co)- io (39b)

(k)(O) =2(- 1)k +lk~r cos #+ + 1 -- (o- 27) e- i(k + 1 o (40)

r=.0 ),2, fP=tan -1 2A, Of<2t (41a)

(0=02-0 , 00
= O +02 (41b)2

Furthermore, the coefficients of the functions g(C) and g2(C) defined by
eqns (24) and (25) are given by

SI=R, So =-RD2  (42)

and

x"f=c (43)

with

c = [0- Rb1 - 2Rb 2  pRbair

f=[IS_-IS_-2 ... SP+ 1]T (44)

0  do .. d 1

0 0 ... do
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3.3. Local Stress Distribution
The analysis of the stress distribution in the neighborhood of the crack

tip is of particular importance and allows study of the growth character-
istics of the interfacial crack. Consider the tip t 2 of the crack and the tangent
t 2 X of the inclusion at the point t2 (Fig. 7). Using the asymptotic expansion

y
matrix

x

P

t2

crack

inclusion

x
FIG. 7. Crack tip coordinate system.

of the function W(C) and its analytic continuation for IC) < 1 around the
point t2 in conjunction with the equations relating Wo (0 to the stress field
and after lengthy algebra the following equations of the curvilinear stress
components a,,, a. and a4, are obtained

= eA cos L2+i)n 27tp +e2A() cos 27tp
2 2i p 2 /

+ /q+4i.2 sincA sin ( + .n 2np-€,)] K1
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e 2In o ) K
+ -si + [nS 2  si n -os - 2+rp)
2o -2 2 ( 2

3oc
-, +4osin s ( +An 21rp K(45)

+The stesien ity fatr K+ An 2  +re si n Anr

= / 3cos -(2 (2

K =- /A2 sin o n" n 2(6

(29

u~~~n~ si +.! e2 / A ---in in A 2

2 -2( sin - cosa +)-

(2

e a Cos A 2np)+e 2 m )CS 2n 2 n p
2v 2rpl (2 (2n

- + 4P sin xs - + n 2tp - ( K 2  (46)(2
= ~ ~ p 2tin(a+ n 2it ). (48 sn( ,n2t )

+I (A + Bs10n(9

- K2 2 sinxsi ;_ (A+sn 2t-q K2 (47
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where

-0+ +2+co +UA{41r sin Clm( 2)I, CO=02-01, 208=0, +6z

A = Re[m'(a 2)]Re[P(r2)] + Im-m'(a 2)] Im[P(a2)] (50)
Im'( 2)312

Re[m'(a 2)] m[-P(a 2)] - Im[m'(a2 )] Re[P(a 2)]
Im'(o2)[

3
11

2

with
P R 4/Lei

P()=R(C)- [g1 - (C+ 2 C] (51)
1 +K

3.4. The Square Inclusion
A rigid curvilinear rounded-off angle square inclusion with a sym-

metrically located interfacial crack is embedded in a plate subjected to
a uniform biaxial stress system N and Tat infinity (Fig. 8). For a critical
value of the applied loads unstable crack extension takes place. The angle of
initial crack extension o is determined by assuming that the crack grows in
the direction of the maximum circumferential stress a,,, while the critical

N sT

N

FIG. 8. Geometry of a rounded-off angle square inclusion partially bonded to an elastic
matrix.
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load is determined by

2rpa. (,Y)= K m  
(52)

where K. is the critical stress intensity factor which is a material constant.
The variation of the crack extension angle % versus the crack angle P for

s= - 1, 0 and I is shown in Fig. 9, while Fig. 10 gives the dimensionless

quantity K. = K1(T,1,r/rR). From Fig. 10 the critical stress Tr for crack

growth is determined.

1200,

30

900'

~S=_1

FIG. 9. Variation of the crack extension angle o( versus half crack angle fl for a square
inclusion for s= - 1, 0 and I.

3.5. The Triangular Inclusion
A rigid curvilinear rounded-off angle triangular inclusion with two

locations of the interfacial crack shown in Fig. 11 is considered. Using the
minimum strain energy density criterion it was found that for the case of
Fig. l(a) the crack always grows from its tip A. The variation of the
dimensionless quantity Km, = 4"17ySc,/(TcrR) versus half crack angle (o/2
is shown in Fig. 12. Analogous results for the case of Fig. 1 (b) where the
crack again first starts from its tip A are shown in Fig. 13. From these figures
the critical stress for unstable crack growth is determined.
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3.0

2.0-

~s=l1

1.0-s- S-

0 31!0o 6 , ,f

FIG. 10. Variation of the dimensionless stress intensity factor K. versus half crack angle for
a square inclusion for s -1, 0 and 1.

t N=sT t N=sT

y matrix Y matrix
BK, JA K,IhA
crack B

cck

A .A -c .

inclso x inclusion x

IN IN

(a) (b)

FIG. 11. A rounded-off angle triangular inclusion partially bonded to an elastic matrix.
Geometrical configuration of two interfacial crack locations.

4. CONCLUDING REMARKS

The failure behavior of certain particulate composites consisting of filler
particles with elastic moduli much higher than the elastic modulus of the
matrix was studied. Two types of problems modelling the composite were
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2.0-
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1.5-

S= 5

S=Q.25
1.0-

s~o
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0.0 -

00 150 300 450 600
=I2 "-

FIG. 12. Variation of the dimensionless minimum strain energy density factor S ,,, versus half
crack angle o)/2 for the case of Fig. I l(a). s=O, 0-25, 0.50, 0.75 and 1-0.

considered: (i) rigid inclusions with cuspidal points embedded in an elastic
matrix and (ii) rigid inclusions partially bonded to an elastic matrix. In the
first case high stress concentrations are developed in the vicinity of the
cuspidal points which constitute nuclei for failure initiation, while in the
second case failure starts from the tips of the interfacial crack which
coincides with the unbonded part of the inclusion. For the partially bonded
inclusion a general solution of the stress and displacement fields was
obtained for any inclusion shape using the method of complex potentials.
The problem was reduced to a Hilbert problem and formulae for
determining the unknown coefficients of the solution were derived. In both
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2.0-

1.5-
S-I

S-0.75

i.0 s-O.5

-0, 0.25

0.5-

s 0.25

0.0-
00 300 600 goo 1200

W.) -

FItC. 13. Variation of the dimensionless minimum strain energy density factor q,,,n versus half
crack angle u/12 for the case of Fig. Il(b). s=0, 0.25, 0.50, 0.75 and 1'0.

cases results were obtained for special inclusion shapes including the fiber,
the hypocycloidal, the astroidal, the square and the triangular inclusion.
After determining the stress field a failure analysis of the composite took
place using the maximum circumferential stress criterion and the strain
energy density theory. The critical load for fracture initiation from the more
vulnerable failure sites and the initial fracture angle were determined.

The results of this work shed light into the complicated problem of
modelling the microstructure of particulate composites whose reinforcing
constituents are of irregular shape like the various inorganic fillers, the
metal or boron filaments, the aggregate or sand particles in concrete. In
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such case failure of the composite usually initiates from the sharp angles of
the inclusions or the debonding areas of the different phases. The analysis of
these types of failure mechanisms is of major importance for the under-
standing of the failure mode of the composite.
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ABSTRACT

This paper derives the governing equations for the therm'smechanical
behaviour of composites. When the basic equations for the thermoelastic
behaviour of solids were first derived in the nineteenth century several
approximations were made. The effect of these assumptions are discussed and
illustrated by the results of a simple laboratory test. The implications of this
work on the analysis of impact damaged laminates are then discussed.

1. INTRODUCTION

The theory describing the coupling between mechanical deformation and
thermal energy of an elastic body was first published in 1858 by Lord
Kelvin.' In composite materials absorption of moisture also results in
internal stresses and/or strains. The thermal environment may also interact
with moisture. Indeed it is generally accepted that the diffusion of moisture
and temperature are also coupled.2'3 However, tests have not yet been
standardized for the required experimental measurements. The current
theories for composites reduce to the theory of classical thermoelasticity
when moisture effects are ignored and the material is elastic. However,
when deriving the expression for the rate of change of entropy, the theory of
classical thermoelasticity assumes that the stiffness tensor is independent of

49
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temperature. For metals this assumption has been shown to lead to
erroneous results.'

This paper presents a consistent formulation for the thermomechanical
behaviour of composites and then outlines the relevant criteria for failure
due to delamination damage.

2. BASIC EQUATIONS

The equations governing the thermomechanical behaviour of a solid body
due to heating and external forces during a reversible process are given
below.

2.1. The Constitutive Equation

aij = C ijlek -/ii(T- T) (1)
- obij(M - M.)

Here Cijk is the stiffness tettsor, fij and 0,, are coefficients related to the
thermal and moisture expansion coefficients of the body respectively whilst
T and Mo are the reference temperature and moisture content respectively.

2.2. Conservation of Mass (continuity equation)

M~ +-
a xi (2)

D C + C V i .tDt
Here V =u ., M is the mass flux of moisture per unit volume and C is the

'instantaneous' density.

2.3. Conservation of Momentum (no body forces)

-V-i +, MV = 0im (3)
Dt

2.4. Conservation of Energy

Hr= S e p is h - T (4)
Here S is the entropy and E is the internal energy.
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2.5. Rate of Change of Entropy

TS = - hi, + CqJf (5)

Here q is the heat generated when I g of moisture is absorbed by I g of
the material and h is the heat flux tensor.

With this formulation the specific heat C, at iij=MA=0, is defined as

C,,= -h.i/,,.m (6)

The remaining equations may be expressed in a convenient form by
introducing the free energy, F, such that

F=E-TS (7)

The quantity F can be expressed in terms of strain, temperature and
moisture in a manner analogous to that given in Ref. 5, viz.

F= l/ 2 EijCjklekL-fl.Ej(T- T)-0pjsjj(M- M,)+ C(T, M) (8)

Here C, is a function of temperature and moisture and as shown in Ref. 5

02F

T 2C ,
= - TT2,j. (9)

The Duhamel-Neuman law tells us that

i = (10O)
IF

whilst S =- O
aT/Cj.M

= i" Lc " C k i +k i j (fi.(T- T))a OT 0 T%

+ gij- O(M- M)) - aT

With this notation the change in entropy can be written as

as. as . aS
9=-TTP+ aM + ag,:-- ci (12)

• . ,m • mmmm mmmT m l
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as 2CNow OT dT2 =CCV/T (13)

and as OT kkl + - (fl.(T- T))+ a (Oi(M-Mo)) (14)

as 0 2F
whilst M - MT(15)

Substituting eqns (13), (14) and (15) into (12) we finally obtain the

'Entropy Equation'

T9 =TCt= ,T(a (flij(T- T a))+ a (qij(M-Mo))

~aT a T

r (c  u )eu  (16)

If we now substitute eqn. (5) into (16) we obtain

- hj.j + CqKI = CC,, T
\(&,(ac jki-k -T aT (#(T- T))

aT O

-T (Okj(M- M.))} T  (17)

Fourier's law for heat conduction may be used in most circumstances
and the term h,, occurring in eqn. (17) can be replaced by

a x, axT

where kio is the thermal conductivity tensor.
In order to solve the above set of equations it is necessary to specify an

equation describing the way in which moisture is absorbed into a com-
posite. Most formulations are empirical. The equation preferred by the
authors was first derived in Ref. 6 and is given below, viz.

a Dj a -M = - (M- AT) (18)

where DU and A are material constants. An extension to allow for
mechanical coupling in the matrix material replaced the term T on the right
hand side of eqn. (18) by a term of the form T+N0 where N is an
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experimental constant and

S= Gkk + A(T- T) + 0(M - M) (19)

Here P and 4 are thermal and moisture expansion coefficients for the matrix
material.

3. IMPLICATIONS FOR CYCLIC STRESSING

If an elastic body is subjected to cyclic stresses and the frequency is such that
the process is adiabatic then, from eqns (5) and (16), it follows that

T ck a a
T= L j T - - fi(T- TJ) - -T (0 ° (M - M °) ) 9i/1C (20)

Most papers neglect the term 0C,1ij/aT.
If this is done 9, is said to be related to t by a material constant.

However, it is well documented 7" that even for metals this constant is
stress/strain dependent.

As shown in Ref. 4 the present theory is able to accurately predict the
stress dependency of the thermoelastic constant K for both a titanium and
an aluminium alloy. The thermoelastic constant and the Gruneisen
parameter for a metal are related by the formulae

K =(I - 2v) y/E (21)
In order to illustrate this effect let us consider a metal bar subjected to

a uniaxial stress

a, i =Sm+AS sin wt, a =0 if i, j#1 (22)

where S. is the mean stress.
Substituting eqn. (22) into (20) gives

CCv - -X -IaS,, coAScoswt+-- 1 -Uco(AS)2sin2cot (23)

Integrating with respect to t we obtain

AT ( I E \ASs-= - I / 2-- S-. . sino(fl

+ 4-ECcE(AS) (1 -cos 2cot) (24)

where T is the reference temperature. From eqn. (24) we see that the
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thermoelastic constant, K, is given by

K= (a I -E-S _ C, (25)

and has a mean stress dependence. Furthermore if, as in Ref. 4, we define
K, ci/aC then

i 1 K 1 lE
IK0 IS E (26), S, P2 0T

The quantity (1/K,)(ak/8S,) was measured experimentally by Machin
et al.' for a titanium alloy Ti-6AI-4V and an aluminium alloy Al-2024 for
which the values 8E/8Twere available.4' 9 Table 1 lists the data used and the
comparison between the theoretically predicted mean stress dependence
and the experimental results. Good agreement between theory and
experiment is clearly evident.

A more detailed analysis and discussion of this problem is contained in
Ref. 4.

TABLE 1
Comparison of theoretical and measured mean stress dependence of K (from Ref. 4)

Material al E dE/dT (dK/dS.)K ' (MPa- 1)
(oC- 

1 ) (MPa) (MPa/°C) Theory Experiments'

Ti-6AI-4V 90x 10-6 111 x 10' -48-0 433 x 10-'  429 x 10- 4

AI-2024 2.3 x 10-' 72 x 104 -360 302 x 10-  319 x 10- 4

For composite materials the change of the stiffness tensor with temper-
ature1" is far greater than for metals, see Table 2, and should not be ignored.

TABLE 2

Graphite-epoxy (AS/3501-6) orthotropic elastic properties (from Ref. 10)

Parameter (lb/in' x 10-6)
Temperature v12  ET Ec  El and El G1 2

(OF)

-65 (dry) 0.3 18"70 17"60 2"30 1-00
RT (dry) 0.3 18"70 17.60 1.90 0-85
220 (dry) 0-3 18-40 17.30 1.65 0.65
250 (dry) 03 18"40 17.20 1.60 063
220 (wet) 0.3 17.30 1.32 0.52
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The temperature rise due to mechanical loading is usually small (i.e. of
the order l/K) unless there is extensive plasticity. However in the vicinity of
a crack or a delamination e is infinite and eqn (16) predicts that the glass
transition temperature will be exceeded in a small localized region.
However the validity of this approach which is based on reversible
thermodynamics is questionable once crack extension or delamination
growth has occurred.

The residual thermal strains e due to the curing process may also play
a role in the variability of fatigue life.The residual strains may be interpreted
as the mean strain level about which the mechanical strains oscillate. As
shown above the temperature depends both on the mean stress/strain and
the cyclic stress/strain fields.

4. FRACTURE MECHANICS

There are two fracture parameters which are widely used to predict the
residual strength of delaminated composite laminates. These are:

(i) the energy release rate approach;
(ii) the strain energy density approach.

4.1. The Energy Release Rate Approach
For mode 1 self similar crack growth of a through crack in the absence of

body forces the energy release rate G can be written as

G=limit W, n, - tj -i)d (27)

where W is the energy density, F, is a vanishing small closed path around
the tip with normal n and tj are the components of the traction vector
on the path.

Here W is defined as

W= l1/2,k1 CiOe8-ftjje 1j(T- T)-ij4ejj(M-Mo)+ CI(T, M) (28)

Let us now consider the integral J, which we will define as

J= fr( WnI- t.-) d s (29)
fr. ( ax1 )

where r. is the external boundary of the body. As mentioned in Ref. 11
there is a tendency to drop the subscript s and refer to J, as J. Using
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Green's theorem it follows that

8(W- ' a~u)d (30)

where V, - V, is the area between the curves r, and r,. If we assume that fitj,
Ou, and Cijk, are only functions of T and M then the term aw/Oxj can be
written as

aW 8 u, 1 8C..u
0!! = ±-(OTi ) I S ik

ax j ax ,/ 2 iiOX Iki,

-.. Ei rflAr- To) + O(M - M)] + nOx---)

and

G=J~,_- I2 ei __ lCijkt Ski - ___ a(flij(T- T)
(32)

+ Oj(M - Mo)+ -dx, IaY

Thus J, will not equal the energy release rate G unless the area integral
vanishes. At constant moisture and temperature J, may be equal to G.
HoweVer in general the area integral will be non-zero and J,, which is
measured experimentally from the movement of the load points,' 2 will not
equal G.

In service aircraft heating is often localized and the moisture content
varies. This will produce a spatial variation in the tensor C1 k with the result
that the area integral will in general be non-zero. Consequently when
designing laboratory tests care should be taken to reproduce the near tip
stress, strain, temperature and moisture fields rather than reproducing the
'global behaviour'. This is particularly true if the aim of the test is to
establish such quantities as the critical damage size or the maximum
permissible load.

For a three-dimensional fracture problem the integral on the right hand
side of eqn. (30) is no longer equal to the energy release rate and is referred to
as T*.
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5. STRAIN ENERGY DENSITY

In the strain energy density approach failure is assumed to occur when the
available energy density W, at a distance ro in front of the delamination in
the direction of growth reaches a critical value W. The value W is
dependent both on the values of dV(= e,, + 922 + &33) and dA, the area of
crack growth.

For thermomechanical problems

W,, = 1/2 , is - 1/2atria(T- T) - l/2ajj/ij(M - M.) - Wf (33)

where flisj=ij Cjk, Oij = Oij Cijkl and Wf is the energy density in the fibre.
As an illustration of this approach consider an impact damaged laminate

with a fastener hole under compression. The dimensions of the model are
the same as those used in the experimental work of Ref. 13, see Fig. t in this
reference. The specimen tested was a [0/45/02 /-45/02/ - 45/0], T300/5208
graphite-epoxy laminate and contained a centrally located hole 9-5 mm in
diameter, surrounded by delamination damage due to impact and poor
drilling. The elements used are mostly twenty-noded isoparametric ele-
ments with directionally reduced integration and 2 x 2 x 3 Gaussian
quadrature points, with the 3 points being taken through the ply thickness.
The crack tip elements along the circular delamination are fifteen-noded
isoparametric wedge elements.

The initial damage around the fastener hole (from Ref. 13) is modelled as
a circular delamination of radius 13.75 mm between the second and third
plies (i.e. between 450 and 0' plies). It can be seen from the ultrasonic C-scan
that the initial delamination is nearly circular.13

The two plies above and below the delamination and the matrix region
around the delamination are modelled separately with ordinary three-
dimensional elements while the remaining 20 plies are modelled with
super-elements with displacements varying quadratically in the local
isoparametric co-ordinate system. The material properties used are those of
ASl/3501-6.

It is important that in the FE model, the faces of the delamination are
prevented from overlapping. Otherwise, non-physical solutions may be
obtained. By examining the solutions of the displacements, it is found that
some parts of the delaminated faces have overlapped. Thus a series of
constraint equations are applied to appropriate nodes to simulate local
closure.

Two load cases are considered, viz.
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1. A compressive load of 150 kN applied at the ends of the model.
2. The load case mentioned above together with a 1.0% moisture

content. To induce stresses due to moisture the external boundary of
the specimen is prevented from moving in the direction perpendicular
to the primary load (i.e. load case 1). Table 3 shows the maximum
value of T* for the two load cases as well as the maximum values of
the parameter W, where

W=limit J Wnds (34)

TABLE 3
Maximum values of T* and W,(J/M)

around the delamination

Load case T* W,

1 71-8 54-1
2 168.0 57.3

Here we see that the value of T* is increased dramatically by the presence
of moisture. However, for the present problem the interlaminar stresses a.,
T.- and tryz are relatively unaffected by the moisture content. This
phenomenon is also seen in the ratio of the maximum value of the strain
energy density W in the matrix material directly in front of the delamina-
tion for the two load cases:

W(load case l)/W(load case 2)= 1.02

Indeed from Table 3 we see that W, which involves the integral of the
energy density around the delamination, is also relatively unaffected by the
presence of moisture. This infers that, in the present problem, the presence
of moisture does not significantly increase the likelihood of static failure by
means of delamination growth along the interface. This observation is
consistent with the experimental results given in Refs. 14 and 15. We also see
that if the growth of the damage is likely to be non-self-similar then energy
release rate methods must be used with extreme caution.
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Fracture Tests for Mixed Mode
Failure of Composites Laminates
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ABSTRACT

A method of calculating the energy release rate, G,for plane delaminations in
composites is given. This is couched in terms of local moments and forces and is
a useful general method of obtaining such solutions. A scheme for the exact
partitioning of the G values into mode I and II components is also given. The
method is then used to give results for both a constant ratio mixed mode test
and one in which the ratio continuously varies. Data are presented for three
matrix resins used in carbon fibre laminates and for two of them, epoxy and
PEEK, a unique locus of G, and G11 is defined. For bismaleimide fibre
bridging results in Gc increasing with crack growth and consequent differences
between the tests. The test methods are generally confirmed as satisfactory.

I. INTRODUCTION

Laminates of high strength and stiffness fibres with matrices of tough
polymers are of considerable commercial interest since they offer a sig-
nificant potential weight advantage over conventional materials. Their very

nature results in a structure in which these properties are realised in the
plane of the laminate but their weakness lies in the through thickness or
translaminar direction. Here strength and stiffness are approximately those
of the matrix. In designing structures care is taken to exploit the in-plane
properties but inevitably some forms of loading can induce failure between
laminate layers, i.e. delamination, and this is often the limiting property of
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the structure. It is therefore important to have a good understanding of
delamination and to be able to characterise it under any loading system so
that design predictions can be made. This paper describes a scheme by
which such a characterisation may be carried out.

The methodology is essentially that of linear elastic fracture mechanics
(LEFM) in that the structure behaves in a linear elastic fashion and failure is
assumed to occur in a plane parallel to the surface. This is a very important
simplification in the analysis since it avoids the necessity of predicting the
direction of crack growth under complicated loading systems. It is assumed
that the laminated structure is such that the crack propagation is forced to
occur in the plane of the sheet. The loadings which effect this growth can be
bending moments, shear forces or in-plane loads and may involve buckling
of the sheet. In such cases the crack can be forced to grow under a
combination of an opening mode (mode I), and a sliding mode (mode II). In
isotropic homogeneous systems such loading can lead to non-colinear
growth but here it is forced to be colinear. Under these circumstances we
must seek a fracture criterion for mixed-mode crack propagation and to do
this we must have tests which enable us to propagate cracks under
mixed-mode conditions. In addition we must be able to analyse the loading
condition so that we may determine the energy release rates for each mode.
Such an analysis coupled with mixed-mode fracture criteria will provide
a basis for a design method.

2. METHOD OF ANALYSIS

In this analysis we shall derive expressions for the energy release rate for the
situation shown in Fig. I in which there is a single, through thickness,
delamination in a laminate of thickness 2h which is located a distance hI
from one surface and in which h1 +h 2 =2h, h,<h2. This is essentially
a one-dimensional model and enables the analysis to be conducted in terms

F!G. I. Delamination.
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of simple beam theory. Practical problems of other shapes could be tackled
in a similar way but would lead to more complicated solutions. The general
method is dealt with in detail elsewhere "2 and will be considered only in
outline here. Let us consider one end of the delamination of length a as
shown in Fig. 2. The general loadings at this point are a moment of

A' A

P1 + p20= pO' da oPaI + P2

M1+ M2  21
Q2

Q +QB' B 2

FIG. 2. Loading.

MI+M 2, a shear force of QI+Q 2 and an axial load of P1 +P 2. In the
cracked section these loads are M1 , Q, and P, on the upper section of
thickness h, and similarly M 2, Q2, P 2 on h2. Let us consider first only the
moments and note that for a section of second moment of area I and axial
modulus E the strain energy per unit length of the beam is given by M 2/2E.
In Fig. 3 we have the moment versus angle of rotation, 0, relationship for

M A ..... - ........

A dM...... ......... ...................

i i

0 4

FIG. 3. Bending moment loading lines.

the section with a crack of length a, i.e. the line OA, which is linear in this
case. If the crack grows to (a+da) then the loading line becomes OA' and
the change in energy of the system for this change in a is given by the shaded
triangular area OAA'.

Now the strain energy U, = 1/2(M4O) so G may be written as:

I ( dM I
dU=-M4+ M+- Idq--(M+dMX0q+d0)

2 2 2
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dU 1 ( d c!
i.e. BG.- -..

da 2\ d-a da)
1 dM dU,

BG=- ~[ da- . da const

o dB; +dU15  (1)
2 da Im os da os

The former is the more usual route but the latter is more convenient here. It
should be noted that the use of constant 4 or M in the analysis to find
G does not imply that this is the loading in practice but is simply a device for
calculation. Returning now to Fig. 2 we can compute dU/da at constant
M here by calculating the energy change within the contour ABB'A when
a increases by da (0 to 0');

dU,= l1 M 1(M 1 +M 2)
2

i.e. - = _+_.
da 2 EI 2E12 2 EI o

Bh3

where I1 =-f--=8Q3 I , I2=8(1- )3I , o=81

and L- with I= 3 3

2h '12

The expression for the total G now becomes,

16BEI +(1-0 3 (

This is an important result since it enables G to be calculated from the local
values of M, B, E and I of the crack tip without recourse to the values in
remote regions. Similar analyses lead to expressions for G for P and Q;

G I - P . +P 2 2]3)

and G= lO [+ _l})+Q2]2 (4)

when A = Bh and u is the shear modulus.
These expressions are for the total energy release rate and it is necessary

to partition them into modes I and II. In bending, mode II occurs when
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there is crack growth with the curvature in both sections equal. If we have
a moment Mil on h, and 0/Ml on h2 then we have pure mode II when:

do _ Mil 0Ml
da El 1  E12

i.e.

0 =3

Mode I requires equal moments in opposite senses so we may write;

M1 =M 1 -M, and M 2 =41MII+M,

Substituting these expressions in eqn. (2) we have a term in Mil, one in
M1 but that in M,M11 is zero thus giving exact partitioning. We may thus
write;

M2 (1+0i) (M 2 - /iM) 2  1
G B 16(-) = B16-(

(5)

_M .3 (1- ) (M2+MI)2 3 (1- 3)
BE! 16 V2 BE! 1

Axial loads give only mode II so that; G, =0 and Gil is given by eqn. (3) and
for shear forces Gl = 0 and G, is given by eqn. (4).

3. MIXED MODE TESTS

The analysis of mixed mode crack propagation requires some form of
criterion if it is to be employed in design. The most obvious would be that the
total energy release rate remained the same, i.e. G constant, but this appears
not to be so and there is usually a distinct difference between G1c and G1c.
The criterion can be represented as a locus of G, versus Gil at fracture and
some form of relationship,

F(GI, Gn1) = 0

is required. In order to explore this it is necessary to perform tests in various
combinations of modes I and II and the following have been employed:

(1) pure mode I;
(2) pure mode II;
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(3) mixed mode I/I in which the ratio G1/G1 remained constant;
(4) mixed mode I/II in which GdGII varied continuously.

These latter two enable the important characteristic of history dependence
to be studied.

Figure 4 shows the test configurations used in this test series and the

P P

a atLh

P
1) Pure Mode I 2) Pure Mode II

P P(I-I/L)

a 2

L a

PI/L
3) Fixed Ratio Mixed Mode 4) Variable Ratio Mixed Mode

FIG. 4. Test configurations.

analysis employed is as follows:

1 P2 a2(1) M2=M,=Pa ,  G= , p- -0(6
2' B-I = (6)

Pa 1 3 p 2a2

2'2, = ,=O, Gi= -6B (7

2 2 16 m B I l lnnlinn I i
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(3) M1 =O, M 2 =Pa

P2 a2  1 P2 a2 3(1 -
G= BEI 16(1 _ )3(I + if), Gi = BEI l6 2(I +0) (8)

G, 3(1 -_ )4
Gn = 2 ,constant

l +Q 2_ (----
(4) Ml= +(1) - -2( )] M2=P [3 (,)2 2()

____22 __ 12] 3P 212  a (9)
16BI a16BEL XLj

G, I[ I-(la)21 2

Gi, 3L1 -(alL)]

4. EXPERIMENTAL RESULTS

The experiments will be described in detail elsewhere 3.4 and only an outline
of the results will be given here. All four test configurations were used on
unidirectional laminates of carbon fibres using three different matrices, i.e.
poly(ether-ether ketone) (PEEK), an epoxy and bismaleimide. In each test
the cracks were grown by loading the specimens in an Instron testing
machine and recording the load, load point displacement, and the crack
length by observing marks on the specimen edge. G values can, of course, be
found via eqns (6-9) from P and a only but the deflection, 6, is useful since
for the mode I test with a uniform section El can be found from the
relationship;

2 Pa3

3 E1

and this value was used in all the subsequent tests.
During each test it was possible to evaluate G as the crack grew and Fig.

5 shows G as a function of crack growth for different modes of testing for
PEEK. In mode I there is clearly a constant G value but in mode II there is
an increase in G as a increases. There is an extreme example of this effect
shown in Fig. 6 for bismaleimide and this gives some hint as to the source
since adhesion of the fibres to the matrix here was not good (the fibres were
not correctly primed). This results in the fracture occurring in several planes



68 J. G. Williams

5

[ MODE I
4,3" MODE 11

X X N MIXED MODE

E ~ 0 a
0  

0a00a0

c: 2

a (Mm)
0 I

0 15 30 45 60

FIG. 5. Variation of G with crack growth for PEEK
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FiG. 6. G as a function of a for bismaleimide.

and in fibres 'bridging' the two arms giving higher values which increase as
the crack grows. In the PEEK and epoxy specimens the effect is much less
marked because the adhesion is better.

Results for the three materials as G, versus Gn1 are shown in Figs 7, 8 and
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FIG. 7. Failure locus under mixed mode loading for PEEK.
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FIG. 8. Failure locus under mixed mode loading for epoxy.



70 J. G. Williams

0.5

00

0.4 PUECONDITION0

O O- VARIABLE RATIO

'" 0.3 n
E0

0.2 13[] [  n

0.1

0.0,

0.0 0.1 0.2 0.3
Gil (kJ/m 2)

FIG. 9. Failure locus under mixed mode loading for bismaleimide.

9. For PEEK and epoxy there is a quite well defined locus for both forms of
mixed mode test and there is little evidence of fibre bridging. For the
varying ratio tests I/L was varied to check independence of test method and
the correctness of the analysis. The agreement between the two forms of test
is encouraging. For bismaleimide the fibre bridging results in large
discrepancies and the notion of a unique locus cannot be used. Since one
would hope for good matrix-fibre adhesion in practice it is felt that the
single line is likely to prove useful. The form of the curve is somewhat below
a linear relationship between Gic and G11c.

The quality of the data confirms that the test configurations and the
analysis employed are satisfactory and represent a useful approach for
analysing this form of fracture.

REFERENCES

I. WILLIAMS, J. G., International Journal of Fracture, 36 (1988) 101-19.
2. WILLIAMS, J. G., in: Application of Fracture Mechanics to Composite Materials,

Chap. 1, (K. Friederich, ed.), to be published, Elsevier, 1989.
3. HASHEMI, S., KINLOCH, A. J. and WILLIAMS, J. G., Proc. ICCM 6, 3, 254.
4. HASHEMI, S., KINLOCH, A. .. and WILLIAMS, J. G., to be published.



5

Constitutive Relations for Transversely
Isotropic Materials

G. F. SMITH and G. BAO

Center for the Application of Mathematics, Lehigh University,
Bethlehem, Pennsylvania, USA

ABSTRACT

A procedure has been developed which enables one to employ a computer
program to carry out the essential c(mputations required for the generation of
non-linear constitutive expressions for the cases where the material con-
sidered belongs to one of the 32 crystal classes. This procedure is outlined here
and extended so as to also cover the cases where the group defining the
material symmetry is one of the five transverse isotropy groups.

1. INTRODUCTION

Composite materials are replacing more traditional materials in a wide
variety of applications. The objective is to design a material which has the
properties required for the given application. We may take a first step in this
direction if we can specify the form of the constitutive equation which
would best suit out purposes. The form of a constitutive equation
describing the response of a material is essentially dictated by the symmetry
properties of the material. We may search through the various categories of
constitutive equations associated with materials which possess symmetry
properties in order to find which most closely matches the desired form. We
may then hope to fabricate a material with the appropriate symmetry by
judicious placement of fibers in a matrix comprised of an isotropic material.
In order to aid in the recognition process, we write the constitutive
expression in matrix form where the matrices describing the material

71
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properties are diagonalized to the extent possible. We employ methods
from group representation theory to attain this end. We plan to consider
non-linear constitutive expressions which generally require a substantial
amount of computation. To overcome any difficulties in this direction, we
have developed a computer program which will generate the diagonalized
matrix form of a wide class of constitutive expressions for materials
possessing the symmetry associated with any of the crystallographic
groups.1'2 In this study, we give the basic information required to extend
these results to the cases where the material possesses symmetry properties
characterized by one of the five transverse isotropy groups which we denote
by T1, T2 ,..., T.. The group T1 defines the symmetry of a material which
possesses rotational symmetry about the x3 axis. The group T2 defines this
symmetry of a material which possesses rotational symmetry about the x3
axis and for which the plane containing the x2 and x 3 axes is a plane of
symmetry. The group T3 defines the symmetry of a material possessing
rotational symmetry about the x3 axis and for which the plane containing
the x, and x2 axes is a plane of symmetry. The group T, is associated with
a material possessing rotational symmetry about the x3 axis and for which
the planes containing the x2 and x3 axes and the x, and x2 axes are both
planes of symmetry. The group T is associated with a material possessing
rotational symmetry about the x3 axis and for which the x2 axis is
a two-fold axis of symmetry.

We observe that the consideration of transversely isotropic materials
may arise in connection with composites in the following ways. Consider
a circular cylinder in which is embedded a number of fibers which are
parallel to the axis of the cylinder. If the fibers are uniformly distributed
over the cross-section of the cylinder, we may assume that the material
possesses rotational symmetry about the axis of the cylinder. In addition,
the plane perpendicular to the axis of the cylinder and the planes containing
the axis of the cylinder are planes of symmetry. The group defining the
material symmetry would be the transverse isotropy group denoted by T4 .
One may fabricate a material consisting of layers of thin sheets in which an
array of parallel fibers is present. If the fibers in any given layer make an
angle of 2n/n with the fibers in the adjacent layers, we may consider the
composite to have an n-fold axis of symmetry perpendicular to the layers.
Further we may assume that the material possesses a plane of symmetry
which contains the n-fold axis of symmetry. If n becomes large, this would
render the material approximately transversely isotropic. The group
defining the material symmetry would be the transverse isotropy group T2.

We discuss below the procedure employed to generate the block diagonal
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form of the matrix constitutive equations. We then give the information
required to employ this procedure for the transversely isotropic groups T,
T2, .. . ,T.. We finally give examples of the application of these results to the
generation of non-linear constitutive expressions. The work discussed
below constitutes part of the doctoral dissertation3 of one of the authors
(G. Bao).

2. TRANSVERSELY ISOTROPIC MATERIALS

The constitutive expressions which we consider are tensor-valued functions
of one or more tensors S, S2 .... of degrees n,, n2 .... in these tensors
which are invariant under a group r defining the material symmetry. We
are primarily interested in the cases where the material symmetry is defined
by one of the five groups T,..., T5 associated with the various types of
transversely isotropic materials. These groups are defined by specifying the
groups of 3 x 3 matrices which define the set of equivalent reference frames
associated with the material. Thus the group T, is comprised of the matrices

Scos0 sin0 0,
Q(O) - sin O, cosO, 0 0<,O0<2n (1)

0, 0, 1

.Let e denote the base vectors associated with rectangular Cartesian
coordinate system x. Let ei denote the base vectors associated with the
reference frame 5 which is obtained by rotating the reference frame
x through 0 radians counter-clockwise. We have

-Q,,0)ej (2)

where the matrix Q(O)= IQo40) 1 is defined by (1). If x and £ are equivalent
reference frames, i.e. if arises from x by applying a symmetry operation to
x, the constitutive equation is required to have the same form when referred
to either reference frame. Let Tj and Ej denote (absolute) second-order
tensors. Then, if

Tij = CIMM...Ek . .. E,, (3)

is the constitutive expression when referred to the x frame, the constitutive
expression where referred to the F frame is given by

j = iJk... mnEki E,. (4)
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where

l= Q jpQ jq, Cq' - .= QpQ jq* .. QM.C pq ,.

EkI = QkQI,E (5)

If the reference frame x and i are equivalent, we require that

Cijkl ...,, = Cijk, ... m (6)

If the symmetry operations consist of all rotations about the x3 axis, the
property tensor Cijft..... must satisfy the equations

Qp(O)Qjq(O).. QW)Cpq..., = Cij...n (7)

for 0 < 0 < 27r. We say that the tensor Cij., which satisfies eqn (7) for 0 < 0 <
27c is invariant under the group T1. We may express a tensor which is
invariant under the group T, as a linear combination of the outer products
of the fundamental tensors

63' 61j ii 2i62j =Oij' 61i62j _2i lj i (8)

Thus, one may express the general fourth-order tensor which is invariant
under the group T as a linear combination of the

6 3i63J6 3k63l, 1; aijc2ki, 3;

63i(6 3jtk1' 6; lijfl kI, 6; (9)

6
3i

6
3jfkl,

6 ; Pijfik1' 3;

where the numbers following the tensors denote the number of distinct
isomers of the tensor. An isomer of a tensor aijkl is obtained by permuting
the subscripts i, j, k, I of the tensor. We have noted that 2 = 2, and f#,
= - fi . We further note that

fij k = jikrjl - iloj (10)

and that only three of the six isomers of ;jfik are linearly independent.
Thus, we have

OiCfi + Llikfilj + tilf ik = 0

ojflkl + 'k(fifi + OCIjk = 0 (11)

Olikfjl + L'Jk Hl + OCkIij = 0

The existence of relations such as (11) renders the generation of the general
tensors of orders 5, 6,... which are invariant under T, a non-trivial matter.
This may be accomplished using a method4 which employs Young
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tableaux. However the procedure for generating the form of a constitutive
equation based on listing the general form of the property tensor CIJU... .

and then substituting into (3) would generally prove to be cumbersome.
It is preferable to employ a procedure based on group representation

theory. A set of matrices P(0) which is in one to one correspondence with the
matrices Q(6) comprising the group T and such that P(01)P(02) cor-
responds to Q(O1)Q(02) is said to form a matrix representation of the group
T. The set of matrices KP(O)K-' where det K #0 also forms a matrix
representation of T, which is said to be equivalent to the representation
P(0). An appropriate choice of the matrix K enables us to write

KP(O)K-1=O 1P1(0 ) _ 2P2(O)4. ... (12)

in block diagonal form where ot, a2 ... are positive integers and where

P1(, 0, 0 0

2P1 O)+P 2(O)= 0, P1(O), 0 (13)
0, 0, P2(0)

We say that the representation P(O) may be decomposed into the direct sum
of the representations P1 (0), P2(O) .... If a representation P(O) cannot be
decomposed, it is referred to as an irreducible representation. The
irreducible representations associated with T are all one-dimensional and
are defined by listing the I x I matrix corresponding to the matrix Q(O). We
define these representations below.

Yo: 1

yp: e - " (p= ,2...) (14)
Fp: eiP' pl2..

yo denotes the identity representation where the same number 1 cor-
responds to each Q(O); yp denote the representation where e- i-O corresponds
to Q(0) ....

We consider the manner in which a vector transforms under the group
T1 . The components , of a vector i when referred to the reference frame
5 with base vectors ii = Q1j(O)ej are related to the components x, of x when
referred to the x frame with base vectors ej by the equations

g, cos 0, sin 0, 0 X,
9i=Qij4O)xjor 2= -sin 0, cos 0, 0 x2  (15)

X 3  O, 0, 1 x3

I~~; X3mum n•m• n lmnn•Il ~ m
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With (15) we readily see that

- i '  = 0, e' O, 0 x 1 -ix 2  (16)

X3  0, 0, 1 X3

This tells us that the transformation properties ofx1 +ix 2,x I -ix 2, x 3 under
the group T are defined respectively by the irreducible representations y,
F1 and Yo respectively. We immediately see that the transformation
properties of

(xI +ix 2)2, (xI +ix 2)x 1 - ix2), (xI + ix2)x3,
(Xi _ix2)2 (X1 __ix2)x3, X3(7

are defined by the irreducible representations Y2, Yo, y1, F2 , r,, YO
respectively. Since the components xjxj transform in the same manner as do
the components Su of a symmetric second-order tensor, we see that the
transformation properties of

S 1 1 -S 2 2 +2iS 1 2 , S 1 1 +S 2 2, S 1 3 ±iS 2 3 ,

S 1I-S 22 -2iS 1 2, S13 -iS 2 ,, S 3 3  
(18)

transform according to 7 2, o, 1,1, I'2' F, 0 respectively. Similarly we see
that

(S 1 1 -S 2 2 +2iS 1 2 )2 (S1 1 -S 2 2 + 2iS 2 XS1 1 + S 22 ),

(S1 1 - S 22 + 2iSI2XS 13 +iS 23), (19)

(S11 - $2 2 + 2iS 2XS - S 22 -2iS 1 2) ...

transform according to 7 / 2, , 3o . respectively. Thus, we may readily
determine the linear combinations of the components of tensors
xjxixj,XiXjxl ..... Si,SiSkti ... sixk,SiiX xi ...k which belong to the various
irreducible representations 7oYI'7., ..... , IF 2 , ... of the group F,

Let us consider the problem of determining the linear stress-strain
relation for a material whose symmetry is defined by the group Ti. We write
the constitutive expression as

T=C1 E (20)

where

T= t 1 1 +t 2 2 ,t33, fit -t 2 2 +2itI 2,t1 1 -t 22 -2i412,

t 
1

3 + it 2 3 , t 13 - it 2 3 II
T
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El = lie,, +e 22,e33,e, 1 -e 22+2ie 12, ex -e 22-2ie 1 2,

e,3 +ie23,el3 -ie23 11
T  (21)

and where C1 is a 6 x 6 matrix. If we refer the expression to the reference
frame 9, whose base vectors are given by i = Qij(O)ej, we have

T=C 1F, T= R(O)T, E, = R(0)E,, C, = R(O)CR -'(0) (22)

If the reference frame 5c is an equivalent reference frame, we require that
C1 =C1, i.e.

R(0)C = C1 R(0) (23)

We observe from (14) and (18) that

R(0)= diag (1, 1, e-2 i , e2 i0, e - i0 , ei0 ) (24)

With (23) and (24), we have 36 equations relating the entries Cf(i,j = I .... 6)
of C, which are given by

C1 l=C1 1, C 12 =C 1 2 , C 1 3 = e -  
13, C14=e2 iOC14,

C1 5 =e-iOC 1 5 , C 6 =eiC 16, ...

With (25) we have

C11, C 12, 0, 0, 0, 0 1

C 2 1, C 2 2 , 0, 0, 0, 0

0, 0, C 3 3 , 0, 0, 0
O , , O, C44 , O (26)

0, 0, 0, 0. C 55, 0

0, 0, 0, 0, 0, C66

This tells us each entry in T which belongs to a representation yP is
expressible as a linear combination of the elements of E1 which belong
to ." Thus, with (21) and (26), we see that T=CE 1 may be written as

t I +t 2 2  C 1 1 , C 1 2  e, 1 +e 2 2

C 2 1 , C 2 2  e 3 3

t 1 -t 22 +2it1 2 =C3 3(e1 -e 2 2 +2ie,2), 2 (27)

tlI +t 22 -2it 12 =C4 4(el I-e 22 -2ie 2), F2

t 1 3 +it 2 3-=C(e1 3 +ie 2 3 ), I'l

t1 3 -it 2 3 =C 6 6 (e 1 3 -ie 2 3 ), F1
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where the yo ... indicates that the quantities in the preceding equation
belong to the irreducible representation yo,.... In (27) it is clear that we
should set C,,=C 33 and C 6 6 =C, 5 - Ifwe set C33 =a+ib, C55 =c+id, the
expressions (27)3, ... ,(27)6 may be written as

t 1 I-t 2 2  a,-b e 1 -e 2 2  t l a  c,-d 13 (28)

2 2e 12  t 23  d, c 23

Let us consider the case where the constitutive expression is given by

tij=Cijklmneklemn, tij = Ct , = elk (29)

We write this in matrix form as

T=C2 E 2  (30)

where T is given by (21) and E2 denotes the (21 x 1) column matrix whose
entries are linearly independent linear combinations ot .,! 21 quantities

2e21,e, e12 ... so chosen that each belongs to one of the irreducible
representations of T. With the notation

E, =eI +e 22 , E2 =e 33, E3 =e 13 + ie2 3, E4 =e 13 -ie 23

E5 =e1 1-e 22 +2ie 1 2 , E6=e1 1 -e 22-2ie 2  (31)

we find that the 21 quantities of degree 2 in the Ei which belong to
YO' Y, 1 1,... are given by

y0:E2,EE 2,E2,E 3E4, E6;

yx:E 1E3, E2 E3, E4E; I-,:EE 4, E2E4, E3 E6;

Y2:E1E5, E2 E, E3; r 2 :E I E6, E 2 E6 , E4; (32)

Y3:E3E5 ; r 3 :E 4 E 6;
/,4:E2; r:E2

The constitutive expression T=C 2E2 may then be written as

ti I+t22 C-- I, C2,C 3 , C4 , C5  E , YO

t 3 3  C6 , C 7 , C8 , C9 , C1 0  E1 E 2

E3E4

E5 E6
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t1 3 + it 23 = c1 E1 E 3 +ct 2 E2 E 3 +cl 3 E4 E, '

tl 3 -it 2 3 = ? 11E 1E4 +cl 2E2E4 +e1 3 E3 E6, F1

tl,-t 22 +2it 2 =c1 4 E1 E5 +c, 5 E2 E +c1 6 E 2, "2

tll-t 2 2 -2it 2 =e1 4EE 6 +jl 5 E2E,+?1 6 E, F2  (33)

where we have noted that E4 = E3  and E6 =E,"

3. THE IRREDUCIBLE REPRESENTATIONS FOR THE
TRANSVERSELY ISOTROPIC GROUPS

There are five groups which we refer to as transversely isotropic and which
are denoted by T1 ..... T,. These groups are defined by listing matrices such
that these matrices or products of these matrices specify all of the symmetry
operations associated with the material under consideration. We may refer
to these matrices as generators of the group. We then define the irreducible
representations associated with a group T by listing the matrices which
correspond to the generators of the group.

Suppose that we are given that the quantities a, ,a,,Ia 3 ,a4 11 T, Ia,,a, II ....

belong to the irreducible representations , . .of a group and that
the quantities bl,h 2,1h3 ,b4 IT , IIbs,b 6,Jr,... belong to the irreducible
representations y0 ,',,,-' 2 .3 .... of the same group. We need to determine the
linear combinations ci=aisjajbk of the products of the a, and hk which
belong to the various irreducible representations of the group. This
information is provided below for the groups T,,....T, in tables which are
referred to as product tables. Xu et al.2 have indicated how these tables may
be employed in conjunction with a computer program to automatically
generate constitutive expressions. The extension of the results in Ref. 2 to
include the transversely isotropic materials requires the development of
a number of computer programs. This work will be carried out subse-
quently.

We further list in tables entitled basic quantities the linear combinations
of the components of polar vectors pi. axial vectors a, and symmetric
second-order tensors Sj which belong to the various irreducible re-
presentations of the group considered.
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3.1. The Group T,
The group T1 is comprised of the matrices Q(0) defined by

cos 0, sin 0, 0

Q(0)= -sin0, cos 0, 0 ,0<0<21r (34)

0, 0, 1

The group T, defines the symmetry of a material which possesses rotational
symmetry about the x3 axis. The irreducible representations associated
with the group T1 are all one-dimensional and are given5 by

Yo: 1

y,: e - ' (p= 1,2.) (35)

Fp: eipe (p = 1,2....

In (35) the 1 x 1 matrices 1, e - 'O and e' Pe correspond to the group element
Q(0). The product table is given in Table 1, with the basic quantities in Table
2.

3.2. The Group T 2

The group T2 is comprised of the matrices Q(0) and R1 Q(0) where

TABLE 1
Product table for T

Yo: ao, bo
aobo

apBp, Apbp(p= 1,2 .....

yP: a., bp
aobp, boa,

amb.(m,n,= 1,2,....; m+n=p)
a.B., A.b. (r,nn= 1,2,...; m-n=p)

r: Ai BP
aoB,. Apbo
A.B. (m,n = 1,2,...; m + n = p)
Amb., a.Bm (m,n = 1,2.... ; m-n=p)
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TABLE 2
Basic quantities for T

Yo: P3, a3, S1 I + S22, S33

yr P1 +iP2,a1 +ia 2,S, 3 +iS 23
J,: PI-iP2,a -ia 2, S13 -iS 23

Y2: S I -S 22 + 2iS 12

F2: S, I-S 2 2 -2iS 12

0 < 0 72r and where

cos 0, sin , 0
Q(0)= -sin0,- cos0, 0 ,R=diag(-l,1,1) (36)

0, 0, 1

The irreducible representations associated with the group T2 are defined by
listing the matrices corresponding to the group elements Q(0) and R r We
denote the irreducible representations (see Ref 5) by

Y0 : 1, 1

Fo: , -I
e - i P, 0 0, 1(yp ~ i ' , (p=,, ... ) (37)

TABLE 3
Product table for T2

YO: ao, bo;
aobo, AoBo
amlbm2+am2bml (m=1,2,....)

F0: Ao, Bo
aoBo, Aobo
amibm2 -a 2bm, (m=1,2,....)

YP: Ila,,, ap2 11 T, ilbpl, bp2 l] r

?laobpl, aobp2 Ir, lIaplbo, ap2bo IIT
[IAobPj, -Aobp2ll I 7!Bo, -ap2Boll r

IIam,bn, am2bn2IIT ,(m, n= 1,2,.... ; m+n=p),

jla,b,,, a,2b j Tb, lIIa,2b,, a, b, II T, (m, n = 1, 2,. ;m-n =p)
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TABLE 4
Basic quantities for T2

YO: P 3 , S1I +S 2 2 1 S33

Fo: a3
yi: IIP1 +'P2, -- PI +'P2 11T, Ila, + ia2, a, -ia 11 T

,

IIS13 +iS 2 3, -S13+iS 23 lT

Y2: IS11-S 22 +2iS1 2 ,S11-S 22 -2iS 2IT

where the first and second matrices correspond to Q(O) and R1 respectively.
The product table is given in Table 3 and basic quantities in Table 4.

3.3. The Group T3
The group T3 is comprised of the matrices Q(O) and R3Q(O) where

0 < 0 < 21r and where

cos0, sin6, 0

Q(O)= -sin0, cos0, 0 , R3=diag(l,,-l) (38)

0, 0, 1

The irreducible representations associated with the group T3 are defined by
listing the matrices corresponding to the group elements Q(0) and R3. We
denote the irreducible representations by

T0 : 1, 1
Fo: 1, -1

y,,: e -P, 1, p:e"' , I (p= 1, 2 ..... ) (39)

-p: ei i, - I; lp:eiSP , - (p= 1, 2.

where the first and second I x 1 matrices correspond to Q(0) and R 3
respectively. The product table is given in Table 5 and basic quantities in
Table 6.

3.4. The Group T4
The group T4 is comprised of the matrices Q(O), RQ(O), R3Q(O) and

RIR 3Q( ) where 0<0<2n and wherecos, sn 0, 0
Q(0)= -sin0, cos0 0 , R,=diag(-1,l,l),R 3=diag(l,l,-l) (40)

0, 0, 1
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TABLE 5
Product table, T

Yo: ao, bo
a0bo, AoBo

a.b-, , . ,,, .B. (m = 1, 2,....

ro: A 0, B,

aoBo,Aob o

arBmm, d.Bm, A.bF., Arabm (m = 1, 2....)

"'p: ap bp

aobp, apbo, AoBP, APBo

arb, A.B. (m, n = 1,2.... ; m + n = p)
ar-., a.b , AraB . , A.Bm (m, n= 1, 2.... m-n=p)

47 d~,b,

ao-P, Cpbo, AoBR , ApBo

db-., A,,,/. (m, n= 1, 2..m+n=p)

,,b., a mb-,, .B., ABm (m, n = 1, 2 ..... ; m-n=p)

rp: Ap, Bp;
aoBp, Apb, Aobp. aPBo

araB., AmB. (m, n= I, 2 ... ; m + n =p)

amB.., Ab-., A .ib,,, (m, n = 1, 2,....; m - n = p)
f 'P: A] , R p

ao1k Apbo, Ao aP pBo

araB., Am., (m, n= 1, 2. m + n = p)
jB,, a.B.m, Amb., A "F. (m, n = 1, 2_ ... ; m - n = p)

TABLE 6
Basic quantities, T3

Yo: a3, S1 +S 22, S 33

rO: P3

y1 : P1 +iP 2

"1: Pi -ip 2

F: a, +ia2, S1 3 +iS 23

r,: a, -ia 2,S 1 3 -iS 23

Y2: S 1I -S 2 2 +2iS, 2

2 : S 1I-S 2 2 -2iS 12
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The irreducible representations associated with the group T are defined by
listing the matrices corresponding to the group elements Q(0), R1 and R3.
We denote the irreducible representations by

yo1 : 1, 1, 1

Y02: , 0 0 1 ,

,'e':1,,010,1
Y04: 1 - , 1(41)

Y: 1I , 01 10 1 1 11 0

e - i 0, 0, 1 -1, 0°ll II(p= I,2,:....
0, e' 1, 0 0, -1

where the first, second and third matrices correspond to Q(O), R, and R3
respectively. The product table is shown in Table 7 and basic quantities in
Table 8.

3.5. The Group T.
The group T is comprised of the matrices Q(0) and D 2Q(O) where

0 < 0 < 2r and where

cos 0, sin 0, 0

Q(0)=- sin 0, cos0, 0 ;D 2 =diag(-l, 1, -1) (42)

0, 0, 1

The irreducible representations associated with the group T are defined by
listing the matrices corresponding to the group elements Q(0) and D 2. We
denote the irreducible representations by

'/o: 1, 1

ro: 1,-I1e", 0il 0i, 1l
P: O, e 1 1, 1101 '11 (p=l, 2 ,... .) (43)

,10, eI 1, 0
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TABLE 7
Product table for T,

y01: a,, b,
a~b1 ,a2b2, a3b3, a4b4

amIbm2 +a,,2bmI,AmIBm2 +Am2BmI (mn=l,2,...)

Y02: a2,b2
a~b2,a2b1,a3b4,a4b3
amIBm2+am2BmI,AmIbm2 +AmsbmI (m= 1, 2_..

Y03: a3, b3
ajb 3,a2bj,a3b1 ,a4b2

amIbm2 -mbmIAm,,Bm2-A, 2BmI (m=1,2 .. )

Y04: a4, b4
ajb4, a~b3, a3b2, a4b,
ajm2-m2B,mbm2,2bmi (m=1,2... )

Ia2BP1, a2Bp2 11T 11 P6, A,2b2 1T

Iia3bp1, -abp2I1T, ljaP1b3, -ap2b, 11T

fa4 B, 1 -a&4 Bp2 11T, JAP1b4, - AP2b411T

IjamIbni, am2b.2 jjT, 1L4,,.I,, Am2B.2 IIT (,n = 1,2,. m+n=p)

Ia.Ib.2,amsb.iIjT ' lja. 2bmI,a.Ibm2 11T  (M' 1= 1,2... ; m- n =p)
11lA.mIB. 2, A,,2 B.1 1T, FiA. 2Bmi, AnIBm2IJIT (in, n= 1, 2_.;m-n=p)

Ila2bp,,a2bp2I11T, ljaP,b 2, aPzb2II1T

Ila3BP1, -a 3Bp2 JT, IIAP1b3, - Ap2b3 lIT
I1a4b,' - a~b, 2 l1IT, Ilap1b4, -ap2b4~ IT

aI~ahBnI, amSB. 2 11T, IIAlbnl,,A. 2b.2 11T (,n= 1,2,.;m+n =p)
IlamIB. 2, am2B.i 11IT Ija.2Bmj .,iBm2 11T (in, n = 1, 2,..;m -n=p)

11 Amilb 2, Am 2bni11T,I11 n2bmi, A.Ibm2 IIT (m, n =1,2. n - n =p)

where the first and second matrices correspond to Q(O) and D2 respectively.
We note that the irreducible representations (43) are the same as those
appearing in (37). The product table will then be the same as the product
table for T2 which is shown in Table 9, with basic quantities in Table 10.
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TABLE 8
Basic quantities for T4

Y01: StI + S22, S33

Y02: p3

Y03 a3

yl: IP1 +iP p2 , p+ p2IT

r,: 1a +ia2, a, -ia2 11T, IS 13 +iS23 , -S13 +iS[lT

Y2 1S 1-S,, +2iSI , S,1-S2 2-2iS 12 i
T

TABLE 9
Product table for T,

Vp: ao, bo

a0bo, A 0B0

aib,.2 +am2b., (m=1,2,...)

F 0 . AO, B,

amib.2-a. 2b.,(=1
2

IIA~bp1, -Abp2I11 T, IIa~1BO, -ap2BOf[T

Ilaabb I aobp2 1T, IIap b0, ap2b0 jT

Ilambn,am2bn2 I, (,n= 1,2,.;m+n=p)

lamib. 2, am2b., i T, Ia. 2b.1, a.1b. 2 IIT (in, n=1.2,..in-n=p)

TABLE 10
Basic quantities. T.

YO: S1 I+S 22, S33

ro: p3,a3

y1: lIP1 +iP2, -PI +'P2 IIT, Ia, +ia2, -a, +ia2 I1T, IS13 +'S239,S13 -'S23 jjT

Y2: S lI ijS 22 +W 2i S 11 -S22 - IS 2IIT
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4. APPLICATIONS

In this section, we give some examples of the application of the results
derived above to the generation of non-linear constitutive expressions. We
first consider the problem of determining the form of a second-order
tensor-valued function

Thj = Cijk1.XkXX,, (44)

which is of degree three in the components of a polar vector x, and which is
invariant under the group T, From Table 2 we see that

t I11 I+ t221 t33, t13 +it23, t13-' t23' tII - t 2 2 + 2it 12, t11 -t 2 2 - 2it 12 (45)

belong to yo, y y1 , r,,/ 2, F2 respectively and that

X3,x 1  ix2, X1 - x 2  (46)

belong to yo, yi, F1 respectively. Upon employing Table I twice, we see that

x, x3(x + x2),x(x 1 +ix,),(xj + x )(x1 + ixa),x2(x1 -ix 2 ),(x2 + x2)(x1 -ix),

x 3(x2-x2+2ixIx2),X3 (x -x2-2ixIx 2 ),(xl+ix2 )3 , (x-ix 2)
3  (47)

belong to i, vYo, Y 1, F, 1, Y2,-2, 3, 1-3 respectively. Each of the
quantities in (45) which belongs to a representation 5,p (say) is expressible as
a linear combination of the quantities in (46) which belong to ',. Thus, we
have

tl 1 + t 2 2  c C1 ,.C+

!! t33 C31 I C 1

t13 + t23 =cx(x I + X2+ c 6(x xx 1 + ix 2)

t 13 -it 2 3 = 5 xE(x1 -ix 2)+C 6(X2 +1 Xx2 -ix 2) (48)

t1 l -t 2 2 + 2it 12 =c 7 x 3(x 2 -x2 +2ixIx 2)
i t l I -- 2 -2it 12= 7x ( 2 - x 2 - 2ix1"2

where e., .... , e, denote the complex conjugates of c"'... C-7.
We next consider the problem of determining the form of the polar

vector-valued function

X i = CijkSjk + CijklmSjk im (49)

of the symmetric second-order tensor Sij which is invariant under the group
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T2. We employ the notation

Sl-S,1 +S 2 2 ,S 2 -S 3 3 ,S 3 =S, 3 -iS 2 3,S 4 =-S 1 3+iS 2 3  (50)

S 5 =S1 -S 2 2 +2iS 1 2 $ 1=S -S 2 2 -2iS 12  (

We note that S4 = -$ 3 and S6 = 95. From Table 4 we see that

X3, 11X1 +ix 2, -X 1 +ix 2 lT (51)

belong to y0 and yj respectively and that

S1, S2, 11S3, S411 , IIS5, S611T (52)

belong to yo, yo, y1 and Y2 respectively. In (52) we have used the notation
(50). Upon employing Table 3, we see that the 21 products of degree two in
the Si(i = 1 ...... 6) belong to the representations listed below.

Y0 : 1 , S2 ,S 1 S 2 ,$ 3 S 4 , $5S6

Y': S111S3, S4 11T, S21IS3, S4 11T, IS4 5,4 3 S6 11T

Y2: S1 IS5. S6 TS21IS 5,$ 611
, IS3, 32 1T4 (53)

Y3: II83S5,S S S 11T
([: fS2, S2 q7

Y4: 5 6srr
The constitutive equation (49) may then be written as

= c 1 S 1 + c 2 S 2 + C 3
$ 2 

" c 4 S "+ c 5 S 1 S 2 + c 6 S3S 4 + c 7 S 5 S 6

X1 +ix 2 __c8
'0 S3  c9

'0  SIS 3 + C0, 0 S 2S3

-X 1 +ix 2  0,C 8  S4  0,C 9  SIS4 0, c 1 0  S2 S 4

+ c 11, 0 $4SS  (54)

0, C1 1  $ 3 S6

Since -x 1 +ix 2 = -(x +ix 2) and $4=-S, we see that c =e, which

implies that c. is a real number. Similarly, we see that c9, c, 0 and c1 are also
real numbers.

We next consider the problem of determining the form of the polar
vector-valued function

X=- cijks k + CijklmSikS. (55)

and the axial vector-valued function

ai = dijkSjk + djkLmSjkSjm (56)
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of the symmetric second-order tensor Si, which is invariant under the group
T3. We employ the notation

S 1=S 1 1 +S 22' S 2 -S 3 3, S3 =S1 3 +iS 23 S 4 =S 1 3 -iS 2 3  (57)

5 =S 1 1 -S 2 2 +2iS 1 2 ,S 6 =S - S1 1 -S 2 2 - 2iS12

We note that S4 = 93 and S6 = S. From Table 6 we see that

X3, X1 + ix2, X1 - ix2  (58)

belong to 10 , y1, 7 respectively, that

a3, a, +ia 2, a, -ia 2  (59)

belong to y., F1 , 1, respectively and that

S1, S2, S3, S4, $5, S6  (60)

belong to yo, yo, 1, 1 , Y2, /2 respectively. Upon employing Table 5, we see
that the 21 products of degree 2 in the S(i=I ..... ,6) belong to the re-
presentations listed below.

y 0 : S2, S2, S 1 S 2 , S 3 S 4 , S 5 S 6

F1 : S 1S 3,S 2S 3,S4 S5

r,: S1 S4 , S2S4,S3S6

Y2: S1S5 , S2S5, S2

72: S 1 S 6 ,S 2 S 6 , 4 (61)

F3 : S3S5

r 3 : S4 S 6

Y4: S5

With (58).... (61), we see that there are no terms of degrees I or 2 in the
Sj(i=l .... ,6) which belong to any of the representations to which
x3 , x 1 +ix 2, x1 -ix 2 belong. This implies that a constitutive expression of
the form (55) is ruled out by symmetry considerations. The constitutive
expression (56) may be written as

a3 =dS 1 +d 2S 2 +d 3Sf +dS- +d 5SS 2 +d 6S3S4 +d.7S5 S 6

a1 +ia 2 =d8 S3 +d9 SS 3 +dxoS 2S3 +d1 1 S4 S 5  (62)

ai -ia 2 = 8 S4 +d[9S1 S4, + oS2S4,+ dll$ 3 S6
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With the notation d8 =es + if8 ...... dII =eII +if 11 , we see from (57) that
(62)2.3 may be written as

a 1  1  e f !S 11,- f I 11 _ (( 11 -S 22 )S 13 ± S S 2

a2  f8, 8  I 231 + + e,, -S 11-- 22)S23+2S 12S1 1

(63)
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ABSTRACT

This paper focusses on the study of transverse cracking in cross-ply composite
laminates under monotonic load. In particular an explicit formula is obtained
for the loss of stiffness of a cracked laminate. But the major part of the paper is
devoted to the statisticalfracture mechanics of progressive cracking. We show
how to predict crack density as a function of applied load. The model agrees
well with experiment.

1. INTRODUCTION

Problems associated with transverse matrix cracking in cross-ply com-
posite laminates have been discussed by many investigators. Two partic-
ular goals have been to predict loss of stiffness and crack density under
monotonic tensile load. To the best of our knowledge the problem was first
addressed by Garrett and Bailey.' The model proposed by these authors is
usually referred to as shear lag theory. This model was subject to further
refinement and development, culminating in the paper by Bailey et al.2

Further contributions to the study of transverse cracking have been given
by a number of authors. For a reasonably complete account see Laws and
Dvorak.3
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The aim of the present paper is to give a succinct account of the
progressive transverse cracking theory developed elsewhere by the present
authors. The mechanical model described is, perhaps, the simplest one-
dimensional model possible. Indeed, some straightforward stress analysis
enables us to predict the loss of stiffness for a given crack density. This
prediction compares well with experiment3 and with the self-consistent
model of Laws and Dvorak4 and the lower bound given by Hashin.5

However, from a practical point of view, the crucial problem is to predict
the transverse crack density as a function of the applied (monotonic) load.
This problem is solved herein by first analysing the fracture mechanics of
transverse cracking and second, by giving an analysis of the statistics of
progressive cracking. The result is a formula which permits us to predict
transverse crack density as a function of applied load. Theory is shown to
compare well with experiment.

2. PRELIMINARIES

In this paper we consider monotonic tensile loading of cross-ply composite
laminates, see Fig. 1. It is convenient to use the subscripts t and I to refer to
the transverse and longitudinal plies respectively. Thus the initial stresses in
the laminate are respectively a, and af.

'b

4
Ora  U --- a

2d :".:: V:':

FIG. 1. Symmetric cross-ply laminate under axial load.

The one-dimensional theory which is outlined here assumes that the
displacement of each layer is constant over the thickness of that layer. As
usual, the displactments u(x) and v(x) are measured from the state in
which there is no mechanical loading. The associated strains are

dv du
T =()
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When the laminate is subject to mechanical loads, the total stress is the sum
of the residual stress plus the stress due to loading:

Ra ;+T, r,= E (2)

art= ()RI+ T, = E,81 (3)
where E denotes Young's modulus.

Turning now to the equilibrium of the laminate it is clear that

bo + da = 0 (4)

and that under applied stress a.

bal + da, = (b + d)a. (5)

The essential feature of shear lag theory is that the shear stress which is
responsible for the load transfer between the 0' and 90' plies is proportional
to the relative displacement of the two layers. In other words

T=K(v-u) (6)

where K is a constant.
Finally we recall from Ref. 3 that equilibrium of the 0' plies requires that

T= -b da, 7r (7)
dx

whereas equilibrium of the 900 plies demands that

T=d --ar (8)
dx

Within the framework of the theory developed here, Young's modulus for
the uncracked laminate is given by

bEl + dE, (9)
E = b+d

Stress analysis of the cracked laminate is most easily achieved with the
help of the differential equation for the transverse stress. This equation is
obtained by differentiating eqn. (8) and making use of (1)-(6) together with
(9) to give

d2a, (10)

dx2  d ,=- , )

Here, we have introduced the non-dimensional shear lag parameter
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through

2 = Kd(bEI + dE, )  (11)
bErEt

We now focus our attention on the ligament between adjacent transverse
cracks, see Fig. 2. In this configuration, the differential equation (10) holds
in the ligament AB and the correct boundary conditions for eqn. (10) are

at=O when x=+h (12)

A B

I-

h ------- h

2dI
FIG. 2. Two adjacent transverse cracks in the 90' plies.

The solution for the transverse stress is

cosh - -

aJ+ (13)
\ cosh -

d
As is shown by Laws and Dvorak,3 it is not difficult to evaluate the
displacements of the respective plies. For our present purposes it suffices to
note that the average strain, e., of the ligament AB, as measured at the
surface of the laminate is

E e=+ d hb tanh } + d-- tanh-h (14)

We see from (14) that the ligament has acquired a permanent strain, E,
given by

d2etjt t h
8 = d2 0,tann--(15)

hbE, d
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Clearly the permanent strain (15) is due to initial stress. However, it turns
out that for all practical problems of interest, the value of cp is insignificant
compared with a. This simple theoretical argument supports the observa-
tion that any permanent strain, due to the relaxation of initial stress at crack
surfaces, is negligible. Now, for a cracked laminate, in which the transverse
crack density is fP, the average distance between cracks is, from Fig. 2,

2h = 2d/fi

Hence from (14) we obtain the formula for the Young's modulus E(f3), of the
cracked laminate:

E(#) =E{I+ P- !tanh } (16)

It is clear from (16) that in order to predict the loss of stiffness of
a cross-ply laminate we need to know the value of the shear lag parameter .
This has been argued in depth by Laws and Dvorak. 3 Briefly, the suggestion
is that be determined by measurement of the first ply failure stress - as is
discussed shortly. It turns out that the loss of stiffness is not particularly
sensitive to the value of . It is also appropriate to mention that the
self-consistent model of Laws and Dvorak,4 the lower bound obtained by
Hashin,5 as well as the shear lag model3 give excellent agreement with
experiment. For details we refer the interested reader to Ref. 3.

In this contribution we prefer to focus on the more difficult problem of
predicting the transverse crack density (fp) as a function of the applied load
(Ga). Once this relationship is available it is clear that we can also predict the
appropriate stress-strain relation, etc.

3. PROGRESSIVE CRACKING

The detailed analysis of progressive transverse cracking is given by Laws
and Dvorak3 so we are content here to emphasize the main results.
Consider the uncracked ligament of Fig. 2. When the applied load reaches
a critical value this ligament will itself crack at some location C, as in Fig. 3.
Since the transverse cracking process is not deterministic there is no reason
to suppose that C lies at the mid-point of AB. It therefore follows that we
need to compute the energy release rate for a crack at an arbitrary location
C propagating across the ply. The required calculation is not easy.
Nevertheless we can read off the required result from the paper of Laws and



96 N. Laws and G. J. Dvorak

A C B.

.- hI = h2- - ---

FIG. 3. The ligament AB with an additional crack at C.

Dvorak:
3

G d(b+d)Eo E 2 h}

G +E0 + -E, tanh - +tanh - -tanh (17)
MbE, ( 2d 2ddI

To get the required energy release rate at first ply failure we consider the
limit in which h, hI and h2 -. o, namely

_ d(b + d)Eo E, 2

- bE E, + E0

Clearly we get first ply failure when
G f = Gc

Thus it follows that

d(b+d)E0 (R+ 2

GrbEIE, E0  
(18)

Now standard data for cross-ply laminates is given by Wang6 for two
different graphite-epoxy systems. In short, all quantities in eqn. (18), except
, are either given or easily inferred. Thus we regard eqn. (18) as the rule

which determines the shear lag parameter .Values for specific systems are
given later.

We now turn to the problem of determining crack density under
increasing load. Here it is necessary to make some assumptions about the
statistics of progressive cracking. In this connection we refer to some
arguments of Laws and Dvorak3 who appealed to elementary fracture
mechanics to show that an appropriate choice for the probability density
function, p, for the site of the next crack in the ligament of Fig. 3, is that p be
proportional to the stress in the transverse ply. Of course, normalization
gives the factor of proportionality. Thus from eqn. (13) with x replaced by
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(y - h) we find { cosh (y-h) ah
P(Y) 1 - h } { (19)

It now follows that in a laminate which already contains cracks of den-
sity #, the expected value of the applied stress to cause additional cracking is2h

E(.a( f))= p(y) a. (y) dy (20)

The integral in eqn. (20) must be evaluated numerically and demands
considerable care.

We now compare the theoretical predictions with some experimental
results of Crossman et al.7 for two graphite-epoxy systems. Perhaps the
most convenient sources for the data are the survey article by Wang'
together with the report.6 Use of these data enables us to calculate the
appropriate value of directly from eqn. (18). The results are, cf Ref. 3,

(02, 90), 0-93

(02, 902)s =1.38

(02, 903). =224

Comparisons of the theoretical predictions with experimental results are
shown in Fig. 4. For clarity we have not included the predictions of the

20

-z 15- (
0

2,
9 0

2)s

-10)
Z [(2,9W3)S (02,9 0 )s

"5

0-
0 250 500 750 1000 1250

Applied load (MPa)

FIG. 4. Theory versus experiment for progressive cracking of AS-3501-06 laminates.
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Wang-Crossman theory in Fig. 4. However, we note that the theory of these
authors also gives excellent agreement.

Finally, we turn to some experimental data obtained by Wang" for some
T300/934 laminates. For these laminates we infer the values of to be as
follows: 3

(0, 902, 0) 1"08

(0, 903, 0) 1"70
(0, 904, 0) =1"79

Theory is compared with experiment in Fig. 5. Agreement is good.

20-

1(0.903,0)15.

(0,904.0) (0,902,0)
>" 10-

CD

0

0 250 500 750 1000 1250

Applied load (MPa)

FIG 5 Theory versus experiment for progressive cracking of T300/Q14 laminates.
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ABSTRACT

Predicting failure modes and mechanisms of failure in composites hinges to
a great extent on our knowledge of the stress fields associated with
discontinuities in composites. In composites, singularities arise at discontinui-
ties at the micro and macro scale of their behavior, and whence affect the

failure mode and damage at all levels. Such discontinuities include interfaces,
boundaries of laminated composites, cracks between layers, design discontinu-
ities such as joints, cut outs, cracks, repairs, etc. The singularities in many of
these cases are not known, or the known solutions are too complex, and no
general method is at the disposal of the designer or experimentalist for
analysing the specific case he is dealing with.

Recently, the author developed a general Finite Element based iterative
method for the solution of eigenvalue problems common in the fracture of
composite materials. The advantage of the method is that it relies on the use of
general purpose finite element packages for performing the iterative analysis.
The data are processed to evaluate both power singularities and oscillating
singularities, occurring at interface cracks of composites. In this presentation,
we will illustrate several problems of interface cracks, and delamination, and
show how the iterative finite element method is used in evaluating the singular
field. The implications of the singularities to failure mechanisms of fiber/
matrix debonding, edge delamination and the behavior of laminated compo-
sites will be discussed.
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I. SINGULARITY FIELDS IN COMPOSITE MATERIALS

The asymptotic field in many singularity problems associated with the
fracture of composite materials can be written as1

r r" k

and
K1 r I  K 2 1  2

uj= - -Fi(O, Ck)+ _jr - F(O, Ck) (Ib)

where 6 is the power of the singularity, which could be real or complex
depending on the nature of the discontinuity and material properties. The
functionsfi. and F! are also dependent on the materials properties Ck and
are both bounded functions. The restrictions on the power of singularity are
that it produces finite displacements at the origin and that the resulting
strain energy is positive definite.

1.1. The Finite Element Iterative Method
The aim of the finite element iterative approach discussed here is the

evaluation of singularity 6 and the functionsfi(O) and Fj(6) in eqn. (1). It will
also be shown that the approach is a global method and whence the stress
intensities can be calculated. This technique will be referred to as the Finite
Element Iterative Method (FEIM).2

- Since the method uses a displace-
ment formulation with elements that satisfy all the requirements of rigid
body motion, constant strain, positive definite strain energy, and finite
displacement for linear elastic problems, the conditions on the asymptotic
eigenvalue solution are satisfied a priori.

1.1.1. Procedure
FEIM uses existing general purpose Finite Element Programs as follows:

I. Construct a circular mesh around the crack or singularity, Fig. 1.
2. The radii of the rings should follow an (r') distribution. For crack

problems the quarter-point elements are used to represent the square
root singularity.

3. Impose arbitrary boundary displacements on the outer boundary
Rb -an approximate solution will accelerate the convergence.

4. Choose radius R. near the crack tip or singularity, where the
displacements {uR. are evaluated.
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(a)

j Y

(b)

FG. 1. (a) Interface crack; (b) finite element mesh for iterative method.

5. Perform a finite element analysis and extract the displacements {uR,}.
Scale the results at R, and apply these as boundary displacements{ Ub} at the outer boundary Rb.

6. Repeat step 5 until convergence is attained.
7. To improve the results, subtract the crack tip displacements uo from

the displacements at the rind R, before scaling. The displacements uo
represent a rigid body motion and therefore do not affect the solution.

The above procedure was originally applied to the case of a crack in
at cnr t the
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asymptotic field exact solution.6 The singularity in this case is ../, and the
only unknowns are the distribution functions fj(O) and Fi(0).

Convergence is judged when the displacements at any ring eventually
approach r' - F(O). Hence, 6 and Fi(O) can be extracted from the analysis.

In the cases where the singularity 6 is a real number, we find that the
displacements {uR. } do not change from one iteration to the next, and the
scaling parameter reaches a constant value. The asymptotic field in this case
is called self-similar. In the case where the singularity ( is a complex
member, the displacements {u,.} have a phase shift from one iteration to
the next and the scaling parameter could oscillate wildly from one iteration
to the next. However, that is the nature of the problem and the evaluation of
this field, which is called a non-self-similar field, will be discussed later.

2. IDENTIFICATION OF THE FEIM WITH THE
POWER METHOD FOR EIGENVALUE PROBLEMS

The Finite Element Iterative Method was identified with the Power Sweep
method for the determination of eigenvalues.' We will show here that
the nature of the iterative procedure for evaluating the eigenvalues is
actually a minimization of the Rayleigh quotient.

The equations of equilibrium solved in each step are given by

1, Kbbj (URJl

where {ui} represents all displacements other than those on the outer
boundary Rb. During the iterative process, we solve

{u} -[Ki]' [K]{uR, } (3)

where

{+ I'u = 0(1UR} -( {u }) (4)

By further partitioning of eqn. (2), {ui}T = Luo, uR., uR] it is possible4 to write
eqn. (3) as

[A]{u ,}= -[B]{uL} (5)

where [A] and [B] are square matrices. Therefore, eqns (4) and (5) form
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a statement of the generalized eigenvalue problem.7 Inverting the matrix
[A], we can write eqns (4) and (5) as

{Un+ 1. }=T]{Un.} (6)
where the eigenvalue ) can be identified with the radial function part of eqn.
(ib), i.e. r( -6). Therefore,

A =(Rb/RJ)( -) (7)

The displacements {uR.} or eigenfunctions of eqn. (6), are identified with the

angular distribution of the asymptotic field, thus

{u.} =F(O, Ck) (8)

The matrix [T] is referred to as the transfer matrix.8 It is possible to show
that when the matrix [T] is symmetric, the singularity is real and when it is
non-symmetric, the singularity 6 is complex.

Although we have identified the eigenvalue with a power type singularity
in eqn. (7), there is no reason not to assume that

); = L(r) (9)

where the asymptotic field of eqn. (I b) can be written in the separable form,

u,(r, 0)= L(r)F(O) + L(r)F?(O) (10)

The function L(r) could be logarithmic or power singularity or a combina-
tion. As long as the field is separable, we can find out the L(r) function by
fitting it to the displacements along any radial line in Fig. 1.

2.1. Complex Eigenvalues
Complex eigenvalue problems arise when the transfer matrix [T] is

non-symmetric. After a large number of iterations (n), one can write eqn. (6)
as

N
C T 'J n{ U~ b} - a" , X I0+1;1 " d, Tl X + " a

t  
i X i , (A !

3

where xj,j = 1.. . , N are conjugate complex eigenfunctions of the problem.
They represent a complete set N for the matrix [T] (order N). x1 , x are the
corresponding complex conjugate eigenvectors of the first dominant
eigenvalue A,, and its conjugate 1'. ae are conjugate constants.

Using the Rayleigh quotient approach, it is possible to show that the last
summation in eqn. (10), will get small in comparison with the first two terms
as the number of iterations gets larger. Therefore, after a large number of
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iterations, the method will converge to the first dominant mode, which is
represented by the first two terms of eqn. (11).

At convergence we can also write the foilowing equation,

+P2 R, {U}+#3fuUR,}= (12)

where/f can be determined by least squares method for the over determined
system of equations. The author determined fli by satisfying eqn. (12) in the
sense of the norms, i.e. dot products are used. These equations were solved
to calculate #1, # 2 and P 3, each equation was obtained by multiplying eqn.
(12) by one of the iteration vectors.

Using eqns (11) and (12), we get the characteristic equation for A, given
by:

fl 2)1 +# 32 1  (13)
from which A, can be obtained and the singularity can be calculated from
eqn. (7) or (9). For a power singularity

), = j +i /j =(Rb/Rs ° + i  (14)

or

+ iql =(Rb/Ra[cos (e ln(Rb/R,)) + i sin (s ln(Rb/R,))] (15)

from which the real and imaginary parts, a and E, can be evaluated.
The dominant eigenvector x, can be calculated from two consecutive

iterations, (n) and (n + 1). Therefore,

i= fR .u ) (16)

where k.+ is the scaling factor during that iteration.

2.2. Global Interpretation of FEIM
The FEIM can also be interpreted as a substructuring method. Each

iteration represents a substructure at the radius R,. This means that the
iterations are continuously zeroing-in on the singular point (e.g. crack tip)
in every successive analysis. It can be shown that the stiffness from iteration
(n) to iteration (n + 1) should be scaled in the following manner,

[K]" + '= (R,/Rb)2[K]" (17)

Therefore, if the initial displacements {(u } were obtained from those of
a model representing a structure or test specimen, the FEIM, in addition to
evaluating the singularity field, will also give the stress intensity factors. Of
course, proper multiplications of the results using eqn. (17) will be needed.
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For the case of complex eigenvalues, the stress intensities are calculated
from eqns (16) and (1), therefore

x=KF(O) and a=x,y (18a)

where the stress intensity K, in this case is complex. It can be written as;

K=(Kl+iK2) and F=f+ig (18b)

If we also write x in its real and imaginary parts, we get,

x =z+iw=(K1 +iK 2)(f+ig) (19)

Using dot products we get
K, = (z. f + w g)/(f, f + g. g) (20a)

K 2 = -(z"g+w.f)/(ff+g-g) (20b)

For real eigenvalues the above equations reduce to

K 1 =(z' f)/(f" f) (21)
K 2 =02

where f is the analytical expression for the functional variation in 0 for the
mode of fracture in interest (I, II, or III). Equations (20) and (21) represent
a powerful method for evaluating stress intensities for complex and real
asymptotic fields. It should be noted that its accuracy is like integral
methods.

2.3. Verification of FEIM
The FEIM was verified for cracks in anisotropic materials.2 Tests on

singularities at interfaces included cracks perpendicular to interfaces,' free
surface meeting an interface,* and crack along an interface of dissimilar
media. 3

The results in all these cases, where analytical solutions were available,
were extremely accurate.

The most severe test5 was that of the crack along the interface of
dissimilar media.9 - 12 In that case, the real and imaginary parts of eqn. (14)
for the power singularity were given by

a + ic =0.5000043- i(0.075 786 03) (22)

The analytical solution' 2 for dissimilar materials with properties

G,/G 2 = 1/10, v,=v2=0.3
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is given by

a+i =0-5 - i(075 811 78) (23)

where e is calculated from the equation,

1 [(3-4v,)/G, + 1/G 2 1 (24)
aIn (3-4 _ 2 )/G2 + I IG,

2.4. Applications
The Finite Element Iterative Method (FEIM) as outlined here exhibits

all of the generalities of the finite element method. Thus problems involving
two- and three-dimensional singularities as well as various material
anisotropy are easily accommodated. Problems of singularity at interfaces
of isotropic as well as anisotropic materials can be handled easily with the
method using the complex eigenvalue method for the determination of the
asymptotic field. It was shown that as long as the field can be written in
a separable form for the r and 0 functions, the method will work.

Solutions of several problems in composite materials are underway.
These include singularities at delaminations,' 3 free edge singularities 4

at cut-outs and lap joints, and intersection of a crack between dissimilar
media with the free surface. The latter problem was solved for homo-
geneous isotropic media. 15 .16 However, some of these results are not in
agreement with the rest.

3. CONCLUSIONS

It was shown that the finite element iterative method is a statement of the
eigenvalue problem of the asymptotic singular field. The FEIM uses
existing general purpose Finite Element Programs with little or no
modification, and therefore represents a powerful tool for the practical
engineer. The method has all the generalities of the finite element method
for 2-D, 3-D, material anisotropy, and orientation.

We have also shown that the method is also a global method, and
whence the stress intensities for real as well as complex fields can be
calculated.
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ABSTRACT

The transition from slow crack growth (ductile behaviour) to rapid crack
propagation (brittle behaviour) by varying the structural size scale and
keeping the structural shape constant, is explained in terms of dimensional
analysis and described with the application of the Strain Energy Density
Theory. On the other hand, in spite of the apparent variability of the
constitutive behaviour as a function of size of material element, the damage
mechanics is proposed as an invariant process at the microscale, which can be
revealed experimentally by temperature fluctuations.

1. INTRODUCTION

In the last few years a great effort has been made by researchers and
institutions to explain two peculiar and recurrent phenomena in material
strength:

(1) size effect;
(2) stable crack growth.

As regards the former, if the structural size scale varies, the structural shape
being constant, the mechanical behaviour of the structure decidedly

!11
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changes from the very brittle to the very ductile (Fig. 1). This effect can be
explained only by the application of physical similitude and scale modelling
concepts.' - As regards the latter phenomenon, it represents only a local
instability at the crack tip and its nature is totally different from that of
unstable crack propagation.6

P 
0

00

DEFLECTION

STRUCTURAL CRACK GROWTH

BEHA VIOUR PROCESS

BRITTLE UNSTABLE

DUCTILE-BRITTLE STABLE-UNSTABLE

DUCTILE STABLE

FIG. 1. Size-scale transition from brittle fracture to plastic collapse.

Stable crack growth may occur both under monotonic or repeated
loading and may precede or follow the unstable crack propagation. The
fundamental laws governing the transition from slow to rapid crack
propagation, and vice versa, should be very general and applicable to very
simple as well as to very complex structures, so that it will be easy and
consistent to extrapolate the results obtained from small specimens to the
project of large structures.

The size-scale transition from plastic collapse to brittle fracture will be
examined on the basis of dimensional analysis and described by the
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application of the Strain Energy Density Theory. 8 . Then, the size effects
on material strength, toughness and ductility will be discussed through the
scale-invariance of the non-dimensional crack growth resistance curves.
Eventually, the cooling-heating effect in a heterogeneous material subjected
to repeated loading will be introduced and explained as a transition from
order to disorder (or damage) according to the thermodynamics of
irreversible processes.

2. DIMENSIONAL TRANSITION FROM PLASTIC COLLAPSE
TO BRITTLE FRACTURE

Two fundamental questions arise dramatically.

(1) Are the data coming from small-scale specimens related to the
collapse conditions in large-scale structures?

(2) If the ductile fracture in small-scale specimens is not completely
obscured by the plastic flow collapse at the ligament, how is it
possible to put the former in connection with the brittle fracture in
large-scale structures?

The competition between collapses of a different nature can be empha-
sized with the application of dimensional analysis and considering the
maximum loads derived from LEFM and limit analysis respectively. The
transition from ductile to brittle behaviour is governed by a non-dimen-
sional brittleness number which is a function of material properties and
structure size scale. A true separation collapse occurs only with relatively
low fracture toughness and/or large structure size.

Due to the different physical dimensions of yield strength, a,, and
fracture toughness, K1c, scale effects are always present in the usual fracture
testing of common engineering materials. This means that, for the usual size
scale of the laboratory specimen, the plastic collapse at the ligament tends
to anticipate and obscure the brittle crack propagation. Such a competition
between different types of collapses can easily be shown by considering the
expression for the stress-intensity factor in a centre cracked slab (Fig. 2):

K,= af( ) (1)

where the shape function f is:

b " 2b
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FIG. 2. Interaction between brittle crack propagation and plastic collapse, by varying the
brittleness number s = Kic/aryl2b.

At the crack propagation condition eqn. (1) becomes:

W0 )

If both members of eqn. (2) are divided by iu,/'2, we obtain-.

K~c Orm, ao

or 
_; ( a .

0. s2=O.Y 2 b

where s is a dimensionless number able to describe the brittleness of the
system and where both material properties and specimen size appear.
Rearranging eqn. (3) gives:

-- s ra, (3)
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On the other hand, it is possible to consider even the non-dimensional load
producing plastic collapse at the ligament (b -a.):

,,__, = I - a (5)
ay b

Equations (4) and (5) are plotted in Fig. 2 as functions of the crack depth
ao/b. While the former provides a family of curves by varying the brittleness
numbers, the latter is represe'ted by a unique curve (thick line). It is easy to
realize that plastic collapse at the ligament precedes crack propagation for
each initial crack depth when the brittleness number s is higher than the
critical value s. = 054. For lower s numbers, plastic collapse anticipates
crack propagation only for initial crack depths external to a certain
interval. This means that a real separation phenomenon occurs only with
a relatively low fracture toughness, high yield strength and/or large
structure size. Not the single values of Kjc, ay and b, but only their function
s - see eqn. (3) - determines the nature of the collapse mechanism.

3. STRAIN ENERGY DENSITY THEORY

3.1. Mechanical Damage and Strain-Softening Behaviour
Damage of the material at the crack tip and crack growth increments will

be computed on the basis of a uniaxial bilinear elastic-softening stress-strain
relation (Fig. 3(a)). If the loading is relaxed when the representative point
is in A, the unloading is assumed to occur along the line AO, so that the new
bilinear constitutive relation is the line OAF. No permanent deformation is
allowed by such a model, but only the degradation of the elastic modulus.
The present model simulates the mechanical damage by decreasing elastic
modulus, E, and strain energy density which can be absorbed by a material
element. In fact, while for a non-damaged material element the critical value
of the strain energy density, (d W/d V)€, is equal to the area OUF (Fig. 3(a))
for a damaged material element with representative point in A, the
decreased critical value, (d W/d V)*, is equal to the area OAF. In addition, as
is shown in Fig. 3(a), the area OUA represents the dissipated strain energy
density, (dW/dV)d, OAB the recoverable strain energy density, (dW/dV),,
and BAF the additional strain energy density, (dW/dV)..

The described model will be extended to the three-dimensional stress
conditions, using the current value of the absorbed strain energy density,
(dW/dV), as a measure of damage. In other words, the effective elastic
modulus, E*, and the decreased critical value of strain energy density,

L
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(a) Area OUAB = Absorbed Strain Energy Density (dW/dV)

35 Area OAF = Critical Strain Energy Density (dW/dV) l
U Area OUA - Dissipated Strain Energy Density (dW/dV)d

30 Area OAB = Rcoverable Strain Energy Density (dW/dVlr
E Area BAF = Additional Strain Energy Density (dW/dV),0 25
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FIG. 3. Strain-softening constitutive law of a concrete-like material in tension: (a) assumed
bilinear relation; (b) numerical damage simulation.

(d W/d V)*, will be considered as functions of the absorbed strain energy
density, (d W/d V), being:

(dW\ _dW dW
kdV) =\dVfd\ kdV),
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Such functions in the uniaxial case are:

OUAB-area - AO-slope, i.e. (dl , E (6a)

OUAB-area -+ OAF-area, i.e. , (dW* (6b)

Stress and strain in the softening condition A (Fig. 3(a)), can be expressed
in terms of stress and strain in the ultimate and fracture conditions:

a=E*e= aGEf (7)
+ au

Through eqns. (6) and (7) it is simple to express the absorbed strain energy
density, (d W/d V), and the decreased critical value, (d W/d V)*, as functions of
the constitutive parameters, a., E, Ef, and of the effective Young's modulus,
E*:

d - (GS+r
= Ou"O) (8)

(W dW

_W ."t -ore (8b)

\dV 2
tdW/dW ) _ /dW ), I
\dv kkV-v2 -(a. e -/d2  (8c)

The relations (8) will be discretized using 25 different values of the elastic
modulus:

E*(n)= (26- n ) E, for n=1,2,...,25 (9)
25

In Fig. 3(b), the results of different tensile test numerical simulations are
reported. Two strain-controlled ioading processes are carried out and the
strain increment in one case is twice as in the other one. The discretized
stress-strain relations are displayed and the comparison with the assumed
a-E constitutive law is also shown. It can be proved that, when the effective
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elastic modulus, E*, varies continuously and the strain increment AE tends
!o zero, the assumed bilinear a-e variation (dashed line of Fig. 3(b)) is
exactly reproduced by the numerical damage simulation.

3.2. Slow Crack Growth versus Unstable Crack Propagation
In order to evaluate the crack growth increment at each loading step, the

Strain Energy Density Theory will be applied, as proposed by Sih.7' . It is
based on the following fundamental assumptions.

(1) The stress field in the vicinity of the crack tip cannot be described in
analytical terms because of the relative heterogeneity of the material.
A minimum distance, r., does exist below which it is a nonsense to
study the mechanical behaviour of the material from a 'continuum
mechanics' point of view and to consider macros-opic crack growth
increments.

(2) Out of such a core region of radius r., the strain energy density field
can always be described by means of the following general relation-
ship:

__) S- (10)
dV r

where the strain energy density factor, S, is generally a function of the
three space coordinates.

(3) According to Beltrami's criterion, all the material elements in front of
the crack tip, where the strain energy density is higher than the
critical value, (dW/dV)*', fail.

(4) When the following condition holds:

Aa = r* = So/(d W/d V)* (11)

the crack may be considered as arrested, at least from a macroscop-
ical point of view. On the other hand, when the crack growth
increment is:

Aa = r* = S¢/(d W/d V)* (12)

the unstable crack propagation takes place. Sc is a material constant
and represents the strength of the material against rapid and
uncontrollable crack propagation. S, is connected with the critical
value of the stress-intensity factor, Kic, through the following
equation (plane strain condition).'

= (1 +v)(1- 2V)K (
S 2 = 2hE (13)
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3.3. Centre Cracked Slab in Tension
A centre cracked slab in tension (Fig. 4(a)) is analysed by using the

Axisymmetric/Planar Elastic Structures (APES) finite element program.9 It
is a computer program which incorporates 12-noded quadrilateral isopara-
metric elements allowing for cubic displacement fields and quadratic stress
and strain fields within each element. The r 1 strain energy density
singularity in the vicinity of the crack tip is embedded in the solution
through the use of J-t nodal spacing on the element sides adjacent to the
crack tip. The idealization of Fig. 4(b) utilizes 309 nodes and 52 elements
and is considered in a condition of plane strain.

52 51 50 49 48

43tt t 44, ,5 ,6 47

42 41 40 39 38

33 34 35 36 37 0

0 I32 31 30 29 28

-2ao 23 24 25 26 27

2b= 30 cm 22 21 20 19 18

- 16 17

a. P.-Ph
a.--. half-crack surface

b = 15cm

FIG. 4. Centre cracked slab in tension.

The strain energy density criterion is applied to the tension test specimen,
considering a strain-controlled loading process. The stress-strain responses
for three different initial crack lengths are displayed in Fig. 5. The load
carrying capacity decreases by increasing the initial crack length.

In Fig. 6, the stress o is represented against the crack growth, 2(a - a.). At
the first steps, the stress increases while the crack grows. Then, after
reaching a maximum, the stress decreases and attains the value zero when
the whole ligament is separated. The maximum represents the transition
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FIG. 5. Stress versus strain response for three different initial crack lengths.
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FIG. 6. Stress versus crack growth plots for three different initial crack lengths.

between stable and unstable structural behaviour. On the other hand, the
transition between stable and unstable crack propagation depends on the
achievement of the critical value of the strain energy density factor, S€.Such
a value has physical dimensions different from those of (d W/d V)€, and
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produces the scale effects recurrent in Fracture Mechanics. In the reality,
the crack instability may precede or follow the structural instability. This
mainly depends on the structural size scale.

Because material damage and crack growth occur in a non-self-similar
fashion for each step of loading, specimens of different sizes appear to
behave differently. The application of Buckingham's theorem for physical
similitude and scale modelling gives:

a= E E U ,I t a0
1  (14)r= dW °dW) 'b b'b

w LY C daV ,

where material toughness, (d W/d V),, and specimen width, b, have been used
as the fundamental quantities. The stress, o, may be regarded as a function
of the strain e only, if all other ratios are kept constant.

In the same way, it is possible to define a dimensionless strain energy
density factor:

d 1 b b' dW), (dW b b b

Function Y can be regarded as linear in a/b6

S dS/da a-ao S(+ (16)
(d W)b(dwd V), b (dW b

I v, dV

which may obviously be rearranged into the form:

S

( d W ' bA , 
(17)

XdVJ

The constants A and B are dimensionless and scale independent. It follows
that the slope of the S-a diagram is constant varying the scale and the
intercept, S., is proportional to the scale b.

Figure 7 shows the straight line plots of S versus crack growth
for increasing size b(ao/b=0"3). The critical crack growth decreases
with increasing specimen size. For example, with the critical value S, =
8 X 10- 3 kg/cm, the limiting size is b = 240 cm. Beyond this size, stable crack
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growth ceases to occur and failure corresponds to unstable crack propaga-
tion or catastrophic fracture.

Figure 8 presents the relations between stress and strain (a0/b =0-3).The
vertical lines with arrows indicate the limiting values of E as the critical

28

CASE No. (1)
x 24
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tAe 1.67 x10-5
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U16

S12 10c
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FIG. 7. Strain energy density factor versus crack growth plots by varying size b (a0/b =03).
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FIG. 8. Stress versus strain relations by varying size b (a0 /b =03).
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strain energy density factor, S, = 8 x 10- ' kg/cm, is reached. Crack instabil-
ity occurs for smaller strains as the size b increases. This is obvious, since the
initial crack length a. also increases, the ratio ao/b = 0"3 being constant. The
structural instability occurs before crack instability only for b < 80 cm (Fig.
8). When, for example, b = 120 cm, softening behaviour is not present and
the crack starts to spread in an unstable manner, stress a still being in the
ascending stage.

It is also interesting to consider the maximum stress a 2x resulting from
the Linear Elastic Fracture Mechanics (LEFM) solution, eqn. (4), and
a() coming from the limit analysis at the ligament, eqn. (5). Normalizing
the strengths al 5 and a3, obtained respectively by the present approach
and by the limit analysis, with oa, obtained through LEFM, we can
evaluate the interaction between the different failure modes (Fig. 9). The

140

K120

. 100

60 &e/ = 1.670" x0-5

40

-0-- Strain Energy Density Theory (ao( I/o 2 ) )
20 . Limit Analysis (a(3l/a(2) " max max

max max
- Linear Elastic Fracture Mechanics

0 60 120 180 240 300

SIZE, b (cm)

FIG. 9. Transition between plastic collapse and brittle crack propagation by varying size
b (ao/b=0-3).

horizontal line mao/rm and ama 5maequal to 100% represents the case
when failure coincides totally with brittle fracture, while the dashed line
represents the case when failure coincides totally with plastic collapse.
When the specimen size is small, the simple formula in eqn. (5) gives good
prediction based on the ultimate strength alone. On the other hand, when
the specimen size is large, eqn. (4) gives good prediction based on the
stress-intensity factor alone. The two extreme situations are then connected
by a transition. For intermediate sizes, the ratio of Fig. 9 appears higher
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than one. This means that a fictitious critical stress-intensity factor
KIP larger than the true Kic may be assumed. In this way, the energy-
absorbing damage process at the crack tip is taken into account.

4. SIZE EFFECTS ON STRENGTH,

TOUGHNESS AND DUCTILITY

Equation (16) may obviously be rearranged into the form:

(18)

the constants 9' and 9. being dimensionless and scale independent. On the
other hand, it is apparent that the quantity Sc/(dWid V),b must also enter
into the dimensional analysis in eqn. (14). In fact, for estimating a .. ,. it
suffices to consider:

d _x = r(S*) (19)

(W) bz

in which S* is a brittleness number analogous to that defined in eqn. (3):

S*= S r (20)(dW'\ b _

Hence, all geometrically similar structures can be regarded as governed by
S*. This dimensionless quantity can be used to predict the stress versus
strain behaviour for all specimen sizes.6

In conclusion and recalling eqn. (18), it is possible to state that above the
size (Fig. 10):

bmax S, (21
(dW)\(1

stable crack growth ceases to occur and the brittle failure is achieved when
the a-c curve is still in its linear initial course (Fig. 8), whereas below the size
(Fig. 10):

bmin , r, (22)bri /dW' =5 + 9'(l- )

(d g.° g'(t
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FIG. 10. Scale invariance of the non-dimensional crack growth resistance curve.

unstable crack growth ceases to occur (even in the softening stage) and the
progressive slow crack growth develops up to the complete specimen
separation. On the other hand, for bin < b < bma, stable (or slow) crack
growth is followed by unstable (or fast) crack propagation. Ductility
appears therefore as a mechanical property depending on the size scale of
the structure, as well as on the fracture toughness of the material.

5. COOLING-HEATING EFFECT IN A HETEROGENEOUS
MATERIAL SUBJECTED TO REPEATED LOADING

5.1. Description of Material and Testing Procedure
In spite of the apparent variation of the constitutive behaviour as

a function of the size of the material element, the damage mechanics is
proposed as an invariant process at the microscale, which can be revealed
experimentally by temperature fluctuations.

The first of a series of tests on composite materials, such as concrete, is
described within the framework of an investigation aimed at identifying
a thermodynamic model for predicting the fatigue life of these materials
when subjected to repeated compression loading. The tests reveal a marked
'cooling-heating' effect for very modest maximum compressive stresses
(amax'i --&fc, wheref, is the ultimate compressive strength). The repeated
loading cycles produce a decrease in the temperature of the material at first,
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and then, as the applied load increases, the temperature is seen to increase.
The behaviour is consistent with the findings of recent investigations on

steel and aluminium specimens tested in tension.10 - 13 However, since we
are dealing with compression tests and repeated loading, a further
investigation was considered useful.

It is verified that the 'cooling-heating' effect depends on the value of the
maximum applied stress (cmax). The test specimens subjected to stress
m > 0"5f, present the heating stage only (in this case the cooling phase

may occur and yet be concealed). In the experimental program, carried out
at the Materials Testing Laboratory of the Structural Engineering
Department of the Politecnico di Torino, another material was also
considered (plexiglass) for comparison purposes.

The first material is concrete made with 350 kg/m3 Portland cement and
alluvial aggregate with max. diameter 40 = 8 mm = 0.31 in. The compressive
strength was found to bef, = 37 MPa. The test is performed on a cylindrical
specimen (H = D = 2-8 cm = 1.10 in), thermally insulated from the environ-
ment by means of polystyrene applied to end and side faces (Fig. 11). The
temperature of the specimen is measured by means of two thermocouples,
T1 and T2, applied to the side faces, and a third thermocouple T3 is used to
determine the temperature of the environment.

Concrete i nsulatin materialtest piece Y>. -

ThermocoupleJH-
Thermocouple " •Thermocouple

T1 "i " T2

Thermocouple T3
to measure
environmental temperature

FIG. 11. Concrete specimen under compression loading cycles. Testing apparatus.
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The comparative specimen of plexiglass consists of a prism (3 x 3 x 5 cm)
tested under identical conditions.

The temperature versus time curves are plotted, the specimens being
subjected to repeated compression loading by means of a MTS machine
(max. loading capacity of 100 000 N) and by measuring the temperature
values by means of a Compact Logger 3440 with a sensitivity of 0.1 K.

5.2. Results and Comments
Table 1 reports the concrete specimen temperature values in relation to

load variations. The load is characterized by the 0 min and a.x values and
the oscillation frequency.

The temperature variation AT(AT= T - T) =specimen temperature -
environmental temperature= ((T1 + T2)/2) - T3 is plotted in Fig. 12.

For load I(am,/fc = 0" 135) at an oscillation frequency of 2 Hz we observe
a marked drop in temperature (cooling stage) which becomes stable
around an asymptotic value AT- 1 K. This value remains unchanged with
load II (amax/fc = 0.27). A reversal in temperature is seen to occur when load

LoadI Load1 I Load X
I N I I

04f Frequency2Hz min = 1MPa I c Failure
cmO,5 =MPa a- ldI 0max

= 2 0
MPa "

0"4 Frequency=2Hz Frequency-2Hz
7.'

0.2 J

3 T e = 06 6 9 7 6 1 6 9 6 , , 1 8 6 .

"'bL.. ,
4)

"E -02 I . ,

4)

, Onmnr1MPa OminzlMPa

r -06 X am. 20MPa ,' 0 30MPa

'Frequency=6Hz' Frequencyr2Hz

-o . . Load Ela Load1 _

-1*0J

FIG. 12. Temperature versus time diagram for a concrete specimen under compression
loading cycles at frequencies = 2-6 Hz.
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III is applied (oma/fc =0"54). At this last stage, the effects of the load
oscillation frequency on temperature values can be observed. The tem-
perature, after reaching a plateau, increases when the frequency is raised
from 2 to 6 Hz.

Figure 13 shows the results obtained for the plexiglass specimen. The

20 PMMA(Plexigiass) /
18

1.6

14-2/
L
E

08 LodadLoad U o I

I a I ''L aO 3. 3 rin = 0 3MPa

Cal 0 6 22 cOmax:8 8MPa Oama,121MPa
.r 0-I

o I . .. . . I
bb~ EISEl

OE b b

02

Te =0 180 480 680 1000 1500
Time (s)

FIG. 13. Temperature versus time diagram for a PMMA specimen under compression loading
cycles at a frequency of 2 Hz.

same testing procedure adopted for the concrete test was used. The cooling
stage does not appear, at least according to the sensitivity of the equipment
used (± 0.1 K). Beginning with load III (amx = 4"4 MPa) a marked increase
in temperature occurs.

It should be observed that the stress-strain curves obtained for plexiglass
during the test by means of electrical strain gauges turn out to be perfectly
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overlapping with increasing cycle numbers. This means that energy
dissipation can be neglected. The opposite happens in the case of c-,ncrete,
for which the hysteretic curve shifts in the direction of positive strains, with
permanent deformation.

The 'cooling-heating' effect may be explained in terms of the concepts of
order and disorder formulated in the 'thermodynamics of irreversible
processes'. The material's cooling coincides with the period in which order
is established in the system with respect to the initial state. Physically, this
could correspond to an increase in the material's homogeneity. In this way,
the differences between concrete and plexiglass may be evidenced. In
plexiglass, in fact, the homogenisation stage is much less pronounced than
in concrete: therefore, cooling is not detected. The temperature versus time
curve represents a possibility of measuring the state of order and disorder
and therefore it becomes a precious tool to forecast the fatigue life of
sti uctural materials. The minimum in the temperature versus time diagram
seems to represent the transition between order and disorder, from
a thermodynamic point of view, or between reversible deformation and
irreversible damage, from a mechanical point of view.
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ABSTRACT

Herein is contained a theoretical assessment of the resulting damage in
composite laminates subjected to low-velocity impact. The composite is
considered to be planar isotropic as found in Chopped Strand Mat (CSM)
and Sheet Moulding Compounds (SMC). The proposed theoretical method-
ology will, although approximate by necessity, be shown to reasonably predict
the loss in strength and stiffness which occurs when such composites are
subjected to impact damage. Reasonable comparison with experimental
studies on glass/polyester CSM samples will be demonstrated.

NOTATION

W Displacement of spherical impactor
Wp Displacement of test plate
V0  Impacting velocity
Vd  Volume of damage
F(T) Force/time relationship
M Indentor mass
FI, F2, etc. Material failure stresses
Fm Peak force during impact
Ei Available energy to cause damage
T Plate kinetic energy

133
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U Plate flexural energy
t Maximum time being considered
T Any typical intermediate time, i.e. 0 < T < t
m, n, ij Integer counters
a, b Test specimen planform dimensions
c Planform radius of indentation
q Power index
w Lateral plate displacement
h Plate thickness
x, y, z Plate cartesian co-ordinates
r, 0, z Polar co-ordinates in damaged region
Ur, Uz Local displacements at impacted region in the radial and

transverse directions respectively
p Mass density of composite
(o Vibration frequency
2t Typical plate indentation
0cm  Maximum plate indentation
oco Permanent plate indentation
a*, b* Characteristic crack dimensions
aDS Damaged specimen residual strength
aius Undamaged specimen residual strength
ao Peak contact stress

Transverse or through-thickness stress

1. INTRODUCTION

At the outset it should be stated that presently there exists no generalised
means of analytically modelling the damage in composite structures
subjected to impact damage. This is true for both ballistic and low-velocity
impact damage. Moreover, the generic term given to studies of this nature,
damage tolerance, is not uniquely defined and has a number of con-
notations depending on the particular field of study. For example, the term
'damage tolerance' has been used to describe the advanced stages of
damage near the fatigue limit of structures subjected to cyclic loading. It has
also been used to describe the ability of structures to successfully carry
loading after localised impact damage, i.e. their tolerance to damage. An
earlier paper by the authors' cited references reflecting a spectrum of usage
of the term damage tolerance.

At this stage, it should be appreciated that the effects of low-velocity
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impact of composite materials will be appreciably different from the more
traditional isotropic equivalents. An isotropic body will generally deform
elastically, then plastically leaving permanent indentation, whereas the
composite will undergo a multimode failure, i.e. the impacted energy will be
transformed into matrix yielding and cracking, delamination, fibre
cracking and pull-out or a complex mixture of these failure modes. Since
each of these forms of failure is difficult to analytically model, their
interaction produces extreme mathematical difficulties. Thus the whole
concept of mathematically modelling failure mechanisms in composite
structures is fraught with considerable difficulties irrespective of the
available computational capability. Hence the reason for the present
workshop which critically addresses this problem and assesses the present
state of the art in this field.

2. THEORY

The methodology proposed herein will, of necessity, contain a number of
simplifying assumptions. Although the same general philosophy can be
applied to both thin and thick structures, the former will be specifically
addressed as most composite structures are, relatively speaking, thin.
Essentially the main difference in the response of thin and thick structures
to low-velocity impact is flexural deformations which are prevalent in the
former. Consequently, the energy consumed by such deformations must be
accounted for when evaluating the available energy to cause damage of the
composite.

Applying the Duhamel integral to the motion of the impactor, the plate
equations (1) and (2) are obtained.

V- -L fF(rXt-T)dT (1)

4 __ 1
wp % 4_ a f F(T) sin o~j(t - r) dr (2)

P b m n cmm O

Hence the indentation of the test plate will be given by (3)

ot lt -flF(z)(t-,)dr- 4--j (io.t-,d (3)o
e 0 ot- abp m. Rm Fo"I ) si0i.( )d 3

The impact of a thick plate will yield the force/time and displace-
ment/time relationships shown in Fig. 1, with the equivalent curves for
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FIG. 1. Typical force and displacement time history for the impact of a thick plate.

a thin plate given in Fig. 2. Worthy of note is that eqn. (3) is only valid until
the point of unloading, at which time the load-indentation law changes and
eqn. (4), which is the general unloading law, can be used to represent the left
hand side of eqn. (3). Typical repeated loading and unloading of a thin
composite plate is shown in Fig. 3.

of F(T)] 1' q O.- o 4

LiF.

This law was experimentally verified as diagrammatically illustrated in
Fig. 4. By numerically solving eqns (3) and (4) by the mean force method, the
complete loading history can be obtained.

The energy available to cause damage will not be totally absorbed by the
plate and can be split into three main headings; that which causes damage,
that which induces plate vibrations and the rebound kinetic energy. The
energy to cause damage is given by eqn. (5). The vibrational energy comes
from two parts, kinetic and bending, eqns (6) and (7), with the total given
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FIG. 2. Typical force and displacement time history for the impact of a thin plate.

by eqn. (8).

Ejd=f Fjx(oj-dco 1) (5)

T= I ph Ow2dx dy (6)
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FIG. 3. Loading and unloading of a thin composite plate.

U = *J D1 2  + 2DI/21 x y + D2
( a2w \21

+ 4DkI 2dxdy (7)

ETotaI = T+ U (8)

The stress/strain (9) and strain/displacement (10) relationships can be
stated as:

[ai] = [aij] - [cj] (9)
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The internal displacements, eqn. (11) can be obtained by curve fitting
a combination of experimental and finite element solution points.

Uz- 4 ~Cos(7t)Cos 4 (a)

U, 01, 1 r)

u 2 [ 1+()] ( rc2)

\am/

Thus the internal stresses can be evaluated by substitution of (1 ) into (10)
and (9).

The foregoing results are appropriate in the vicinity of the impacted
region. Thereafter, the areas remote from damage can be considered using
a cartesian set of co-ordinates.

The in-plane strains remote from the damaged region can be written as:

a2w

w= -z _-- i (12)

0 2 w

YX, 2-2z y

The plate stresses and strains can be related by eqn. (13).

sx~aj lifx.- aj2f.-7-al6Txy

y-a 12x
+
a22Y + a26Txy (13)

yxYa 1 6 6 + a 266y + a6 6rxy

Therefore, the in-plate stresses are given by eqn. (14).
F a2w 02W 02Wl

a =-Z[AIIl4+A1 2 j4+2AI 6
2 J

ra 2w a2w a2w 1
Y = Z [

iX 

. 6C2 A 6a W+ A 60
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From simple equilibrium of a typical plate element eqns (15) can be
formed.

O + ,y + O- 0
ax ey Oz

+ I-0 
(15)

Thus the corresponding through-thickness shear stresses are given by eqn.
(16).

TXZ 2 41][1 14.3A 1 6 OX2'0y + 12 +2A66a~ay2 + 2 6 T-dj

(16)

l-2 h2 l- a 3w a3w 2w A 3w-
2 4j~ 1A6 ax3A26 aXay 2 +( 12 + 2A66)OX20Y+ 26 PJ

Considering the specific case of a rectangular planform plate being
impacted by a spherical indentor, the total combined stresses can be given
as eqn. (17), with the individual stresses transformed into the polar
co-ordinate system by eqns (18).

0.Total a Local + 0Bending (17)

a, = aU cos2 0 + aY sin 2 0 + 2Ty sin 0 cos 0
ag = ax sin' 0 + a cos 2 0- 2rxy sin 0 cos 0
0=0. (18)

To, = -rxz sin 0 + ryz cos 0
T,, = - T.., COS 0 + Tz sin 0

T,0 = (ay - a_) sin 0 cos 0 + TXY(cos 2 0- sin 2 0)

With the internal stresses evaluated, the general stress distribution is given
by Fig. 5, if a suitable failure criterion is applied on three mutually
perpendicular faces of an element using eqns (19).

2 2 2.a! 0"02 + U2 + 0"12*

PI FIE2  F - 12  1

2 2 2a"2 a. 2 (3 U. 3 "2

F- 2 -_ _ + 2 -- - =  ( 1 9 )
2 F2F 3 F3 F223

2 2
F1"IF 03 F"3 F"123
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Using this methodology, a typical symmetrical section of the resulting
volume of damage will be shown in Fig. 6. By representing the characteristic
dimensions of the volume of damage using a semi-elliptical crack, as shown
in Fig. 7, and making the resulting behaviour of the damaged and cracked
specimens identical, a measure of the residual properties of the damaged
specimen can be obtained.

The application of linear elastic fracture mechanics gives the strain
energy release rate as eqn. (20).

G (1-pz2 )tK
GI =---E -- (20)

A6

FIG. 7. Semi-elliptical surface crack.
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where the stress intensity factor is given by eqn. (21).

a* 2h na*
b 3n -b*2')(as tan -h-) (21)

(-8+ ).
Thus the residual strength can be evaluated, eqn. (22).

aDS= Cus + K I [wk-F(vA) j (22)

Providing a relationship between stress and strain is available, the residual
stiffness can also be evaluated.

3. RESIDUAL STRENGTH INDICATIONS

Typical residual strengths for thick and thin plates are shown in Figs. 8 and
9, respectively. The latter figure shows a number of experimental points
obtained using CSM-GRP specimens which corroborate the present

1.0

Damaged plate

I I
0 5 10

Energy (J)

Fio. 8. Residual damaged strength (thick plates).
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FIG. 9. Experimental and theoretical residual strength (thin plates).

theoretical methodology. Also, the former figure clearly shown that
appreciably greater levels of damage energy are necessary to produce
significant loss of strength in relatively thick specimens.

Clearly the present methodology has wide connotations with regard to
various forms of composite materials, and indeed, traditional materials of
construction, the only proviso being the assumption of planar isotropy.
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Exact Elastic Stress Analysis
of Laminated Plates

A. J. M. SPENCER

Department of Theoretical Mechanics, University of Nottingham,UK

ABSTRACT

A forthcoming paper describes an exact method of solution of the three-
dimensional elasticity equations for both the stretching and bending of
isotropic laminated elastic plates. 7he theory is a generalisation to laminates
of the 'exact plane stress' theory for homogeneous plates which was formulated
by Michell in 1900 and was described by Love." The essential feature is
that any solution of the two-dimensional classical elastic plate equations can
be used to generate an exact three-dimensional solution. The two-dimensional
solution may be obtained by any of the available methods, including numerical
methods. Among other quantities, the interfacial shear stress components are
evaluated exactly.

Progress in extending this theory to the more important case of anisotropic
laminates is described. In this case exact closed form solutions cannot be
obtained, but solutions in infinite series of powers of the aspect ratio have been
formulated.

This approach yields solutions which exactly satisfy the three-dimensional
elasticity equations and lateral surface boundary conditions. Edge boundary
conditions are satisfied only in an average sense. However the deviation of the
edge boundary values given by the theory from those prescribed is a measure of
the magnitude of the edge effects which may cause delamination and failure.

1. INTRODUCTION

The three-dimensional linear elastic stress distribution in a laminated plate
is basic to any analysis of damage or failure in the plate. In this paper we

147
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outline a procedure for determining such stress distributions for plates of
any shape subject to any of the standard edge boundary conditions. Both
stretching and bending solutions may be dealt with, but for brevity we
concentrate on the problem of in-plane stretching under edge loading.

With the exception of a few very special solutions, the existing theories for
elastic analysis of laminated plates are approximate theories, and none of
them appears to the author to be entirely satisfactory. A brief review is given
in Ref. 1. The most commonly used theory is probably the one known as
Classical Laminate Theory, which is described, by e.g. Christensen.2

In effect, in this theory the laminated plate is replaced by a homogeneous
equivalent plate of the same overall geometry but with elastic constants
which are suitably weighted averages of the elastic constants of the laminae.
By its nature, such a theory can only yield averaged displacement
components and approximate stress components. Whilst this knowledge is
adequate for many purposes, for the analysis of failure it is important to
know the detailed through-thickness distribution of stress and displace-
ment so as to determine, for example, the inter-ply shear tractions which
have an important bearing on the onset of delamination.

In a recent paper, Kaprielian et al.1 have given a three-dimensional
analysis for a laminate composed of isotropic laminae. This theory is
outlined in Section 2. The outstanding feature of the theory is that the
three-dimensional solution for the laminate is generated, in a very simple
manner, by the two-dimensional classical laminate theory solution for the
equivalent plate.

The case of greater practical interest is that in which the laminae are
anisotropic and differently oriented. The theory of Section 2 does not extend
directly to the case of anisotropic laminae, but it can be adapted to this case,
to any required degree of accuracy. Work on the problem of anisotropic
laminae is still incomplete, but a preliminary report on it is given in Section
3. It is intended that a full account will be published elsewhere.

The only restriction on these theories is that, as in all plate theories, edge
boundary conditions can be satisfied only in an average fashion, rather than
point by point. A brief discussion of edge effects is presented in Section 4.

2. ISOTROPIC LAMINATES

This section gives a brief summary of the theory which is described in detail
in Ref. 1. We first state some results of classical isotropic thin plate theory.
Our plate is supposed to lie in the X, Yplane of a system of rectangular
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Cartesian coordinates X, Y, Z. Relative to this system, displacement
components are denoted by U, V, W, and stress components by a. , ax,,...I
o. Then for in-plate stretching deformations the governing equations are

2(+l)Ax-D(y=O, 2(i+1)Ay+!Qx=O (2.1)

where
A= U,x+Vr, f1=177-U (2.2)

and

q = A/(A + 2y ) = v/(l - v) (2.3)

where C, / are average in-plane displacements, A, ju are the Lam6 elastic
constants, v is Poisson's ratio, and subscripts following commas denote
partial derivatives. It follows from (2.1) that

V2A=O, V2 =0 (2.4)

where V2 is the two-dimensional Laplacian operator. For bending
deformations under edge loading, the classical result is

V4 FW=O (2.5)

where 1F' is the deflection of the mid-plane. When C and V, or iF', are
determined, the corresponding stress resultants and moments are readily
calculated.

We now present two classes of exact solutions in three-dimensional
isotropic elasticity theory. We consider a homogeneous layer of uniform
thickness 2h with its mid-plane at Z = O. It is convenient to employ scaled
variables (x, y, z) and (u, v, w) defined as

(x, y, z) = (X/a, Y/a, Zia), (u, v, w) = (U/a, V/a, W/a) (2.6)

where a is a characteristic in-plane dimension. We also define the aspect

ratio & as

F = h/a (2.7)

In practice it is expected that normally E<< 1, but the analysis is exact and
does not depend on c being small.

Solution I
Suppose that uo(x, y), vo(x, y) satisfy the classical thin plate equations for

some (unspecified) value 4 of i1, and

Ao = u0. + vo,,, 00 = Vo0 X- Uo, , (2.8)
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Thus

2(4 + 1)Ao - Qoy = 0, 2() + l)Ao, + fO.- 0 (2.9)

and so

V 2A0 =0, V2
0 =0 (2.10)

Then the three-dimensional elasticity equations in the layer with elastic
constant q are satisfied by u(x, y, z), vx, y, z), w(x, y, z), whereLu(x, y, z)][ruo(x' i)] 212 { A.] + [ Y1

v(x, y, z)] Lvo(x, y) LAo,+
(2.11)

ix, y, z)= -?I(z + S)Ao

where S1, S 2, S3 are arbitrary constants.

Solution 2
Suppose that wo(x, y) satisfies the biharmonic equation

V'wo = 0 (2.12)

Then a solution of the three-dimensional elasticity equations is

1 1, ,Z) &-(z + B W OJ +e E(Jz3 +JBI Z2 + B3Z + B4,+ 2)LVOIX4vX, y, z) ' 1 o2 NJ

(2.13)
W(X, y, Z)= Wo(X, y) + g2i1(JZ2 + B 1 z + B2 )V 2 Wo

where B, to B4 are arbitrary constants.
For either solution, the stress is readily calculated by substituting (2.11)

or (2.13) into the stress-strain relations.
The solutions (2.11) and (2.13) can be derived in various ways; one

derivation is given in Ref. 1. With special choices of the constants Si, Bi they
were obtained by Michell and are given in Love. However these authors
do not seem to have recognised that the three-dimensional solutions are
generated by two-dimensional solutions of (2.9) and (2.12).

Let us now consider a laminate comprising 2N + I layers of different
isotropic materials. For simplicity we consider geometrically symmetric
laminates. Quantities relating to the rth layer will be identified by the index
r; the layer r = 0 contains the mid-plane of the laminate and the layer r = N is
adjacent to the upper surface.

Solutions of the form (2.11) and (2.13) are adopted in each layer, with the
constants 5 "1 and B') applying in the rth layer. The solutions (2.11) are
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appropriate for stretching deformations and (2.13) for bending deforma-
tions; for a symmetric laminate these solutions uncouple and may be
treated separately. For brevity we discuss the stretching solution only. This
has available the 3(N + 1) constants Sr). Conditions which have to be
satisfied are

(a) symmetry conditions at the mid-plane z = 0;
(b) continuity of displacement and traction at each interlaminar inter-

face;
(c) traction-free conditions at the lateral surfaces.

It is found that all of these conditions can be satisfied by appropriate
choices of Si,", uo(x, y) and vo(x, y). Conditions (a) and (b) provide a set of
recurrence relations to determine the Si'); except for a single normalising
condition these constants depend only on the laminate stacking geometry
and laminae elastic constants. Hence for a given laminate they can be
calculated once and for all, and do not depend on any particular
boundary-value problem or shape of plate. The displacements uo and vo
have to be solutions of the thin plate equations (2.9) with the elastic
constant 4) chosen to have the value it has in the classical laminate
theory-that is, the value appropriate for the equivalent plate.

We may therefore follow a very simple procedure. We first calculate the
elastic constants for the equivalent plate, as in classical laminate theory, and
the laminate constants S '). Then, for a given boundary value problem, we
solve the classical laminate theory equations to determine uo and v.; this
may be done by any available method, including numerical methods. The
displacement in each layer is then given immediately by (2.11), and the stress
by substitution in the stress-strain relations. The bending problem may be
treated similarly.

One of the quantities of interest is the inter-laminar shear stress. If the
traction on the interface between layers r- 1 and r is r, then we find that

-2t{PuoEo(0o-1)+2 S1=1,(uq.-4) grad A0  (2.14)
s=!

where/at, q, relate to layer s, j relates to the equivalent plate, E, = h./a, 2h, is
the thickness of the layer s, and A0 arises from the equivalent plate solution.

3. ANISOTROPIC LAMINAE

The success of the procedure described in Section 2 arises because the
right-hand sides of(2.11) and (2.13), regarded as power series in z, terminate
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after a finite number of terms, and reduce to polynomials in z. When the
laminae are anisotropic, this situation no longer obtains, and correspond-
ing closed form solutions do not exist. However the concept of generating
three-dimensional elasticity solutions from two-dimensional equivalent
plate solutions remains valid.

We consider stretching deformations only. In classical thin plate theory,
the governing equations for the mean in-plane displacement components
are

Q I + 2Q 16 a,- + Q6 6 zi,y + Q16 vxx
+ (Q 12 + Q66)i,xy + Q26 0,YY -0

(3.1)
Q 16 kxx + (Q 12 + Q66)i.xy + Q26 ky

+ Q66 e.xx + 2Q 2 6 U,.xy + Q22 Eyy -0

where Qj are the 'reduced' elastic constants of the material. Solutions of
these equations can be represented in the form (e.g. Leknitskii5 )

[j =2 Re {p 1 p,1(x+s 1 y)+p 2qP2(X+s 2 Y)} (3.2)

where s, and p, are the eigenvalues and eigenvectors of the eigenvalue
problem which arises by seeking solutions of (3. 1) of the form i = p(p(x + sy).

For an anisotropic homogeneous layer we seek three-dimensional
solutions of the form

u =Uqp{x +sy +at(z- d)} (3.3)

where u =(u, v, w)T. On substituting (3.3) into the stress-strain relations and
the equilibrium equations, and provisionally treating s as known, there
results an eigenvalue problem with eigenvalues + t and corresponding
eigenvectors Ut (i = 1, 2, 3). Thus we obtain solutions for the rth layer of the
form

3u=, [K ,"+UV,+ pfx + Sy + E, tj1(z -d" )}r
1=1
+ K!')-U!') ->p{x + sy -,t!')(z-d )}] (3.4)

where K!')± and d(r)± are constants.
For a laminate we assume solutions of the form (3.4) in each layer. The

constants d,± are chosen so that the arguments of p are continuous at each
interface. The conditions of continuity of displacement and traction at the
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interfaces then determine K to leading order in e except for normalising
factors. It remains to determine the parameter s. This is fixed by the
traction-free boundary conditions on the lateral surfaces of the plate. It is
found that these are satisfied to leading order in e if s is chosen to have the
value given by classical plate theory, for the equivalent plate. Thus, we
obtain solutions of the form

3 2

u=Re Y 1 K +U pjfx+sjy+Etj )(z-di"+
i-1 j=1 (3.5)

+ K t?) - U)O- (pj {x + sjy- st1 (z-dI )}]

where s, are determined by the elastic constants for the equivalent plate,
(p,(x+sjy) represent a solution of classical laminate theory for the
equivalent plate, and t ?, d, )±,. ( Ut)±, ' U can be determined in terms of the
laminate geometry and the elastic constants of the laminae.

Solutions of the form (3.5) yield exact solutions of the linear elasticity
equations in each lamina. However they satisfy the required continuity
conditions at the inter-laminar interfaces and the traction-free boundary
conditions at the lateral surfaces only to leading order in e. To correct this
we note that the discrepancy is of order ixp(x + sjy), and that if qj(x + sjy)
generates a solution of the governing equations, so do (p")(x + sy), where
pgt") denotes the nth derivative. Thus, finally, we are led to solutions of the

form
3 2 3 En[~j QU (p()f s._j_, +e&I (z -d&l)

u= Re E E Y_ K~ r in )}i1j
i=1 j=1 n=O (3.6)
+ ' Kvg- U : -) ){ sy -e ,t(.(z - d' ) )}]

Thus, given a classical thin plate solution for the equivalent plate, the
three-dimensional solution for the laminate can be constructed to any
required order in e.

4. EDGE EFFECTS

The solutions outlined in Sections 2 and 3, which we term interior solutions,
are exact solutions of the appropriate elasticity equations, and satisfy the
lateral surface boundary conditions. However they satisfy edge boundary
conditions only in an average sense. To satisfy edge boundary conditions
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pointwise, it is necessary to superpose additional solutions which neutralise
the mismatch between the actual boundary conditions and the boundary
values of the interior solution. It is to be expected that these edge solutions
will decay exponentially with distance from the edge; however, especially
for highly anisotropic materials it is possible that the exponential decay rate
will be slow and the edge effects may penetrate a substantial distance into
the plate. Also, the edge solutions may include stress singularities at the
intersection of an edge with an interlaminar interface.

Although the determination of the edge solution is a separate problem,
the interior solution can give useful information about the magnitude of the
stress in the edge solution. In particular, the magnitude of the mismatch
between the actual boundary conditions and the boundary values of the
outer solution controls the magnitude of the edge solution. It is tentatively
suggested that some suitable measure of this mismatch might serve as
a design parameter which could be used as a measure of susceptibility to
edge delamination.
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Recent Progress in the Mathematical Modeling
of Composite Materials

R. V. KOHN

Courant Institute of Mathematical Sciences, New York, USA

ABSTRACT

We review some of the recent mathematical progress on the effective moduli of
composites. Specific attention is devoted to mathematically precise definitions
of effective moduli, new methods for bounding effective moduli, new construc-
tions of mixtures with explicitly computable properties, and applications to
structural optimization.

1. INTRODUCTION

We are concerned with materials that are spatially heterogeneous on
a suitably small length scale, and with linear models of material behavior,
for example linear elasticity. The effective moduli of such a 'composite'
describe its overall, large-scale behavior. They have long been an object of
study by physicists and materials scientists; selective reviews of the
extensive literature include Refs. 14, 22,68, 69, 72. More recently, the study
of effective moduli has attracted the attention of a growing community of
mathematicians as well. The relatively new notions of homogenization and
G-convergence provide a firm mathematical foundation;5' 6 2,65 . 71 more-
over, the effective moduli of composites have been linked to fundamental
issues arising in the optimal control of certain distributed parameter
systems, and to deep questions involving the lower semicontinuity of
variational functions, see, e.g. Refs. 1, 12,28, 30, 32, 38, 39,49, 50, 58,67. The
specific questions about effective moduli raised by these new applications
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are sometimes different from those that were the focus of the older
literature: for example, applications to structural optimization require the
specification of all (anisotropic) composites attainable as mixtures of given
components in specified proportions. However, the mathematical tools
developed to address such questions have also led to new results that are
very much within the purview of the older theory. Examples include the
simultaneous attainability of the Hashin-Shtrikman shear modulus and
bulk modulus bounds; 7, 36,42.51 the validity of a conjecture of Schulgasser
about the effective conductivity of polycrystalline composites;5 and the
attainability of certain mean field theories. 2 .4 1

The goal of this paper is to review selected aspects of this recent
mathematical progress, which it is hoped will be of interest to a brr A
community of specialists in materials science. It should be emphasized that
the ideas presented here are a synthesis of the work of many individuals, and
that the selection of topics is somewhat arbitrary-in no way representing
a comprehensive survey of the most important recent developments.

2. MATHEMATICALLY PRECISE DEFINITIONS
OF EFFECTIVE MODULI

We are concerned with mixtures of continua on a length scale small
compared to that on which the loads and boundary conditions vary, but
still large enough for continuum theory to apply. Such a 'composite' is
clearly an idealization: it represents the limiting behavior of a sequence of
structures, as the ratio e = IlL relating the 'microscopic' length scale I to the
'macroscopic' one L tends to zero. There are in fact several distinct theories,
differing as to the form assumed for the fine scale structure. A periodic
composite is one whose microscopic structure is periodic with a specified
unit cell; a random composite is one whose fine scale structure is a stochastic
process with specified statistics. There is also a third approach which makes
no such hypothesis on the fine scale structure, appealing instead to
a compactness theorem for systems of partial differential equations. This
last theory, known variously as G-convergence or homogenization, re-
presents in a sense the most general approach.

To fix ideas, let us focus the discussion on mixtures of two isotropic,
linearly elastic materials in R'(d= 2 and d= 3 being, of course, the cases of
physical interest). Each of-the component materials is characterized by
a bulk modulus K, and a shear modulus /i (i = 1,2), determining a unique
Hooke's law tensor A-a symmetric linear map on the space of symmetric
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tensors-such that /j= jt eI -jj e ! t 21

for any symmetric tensor e. The associated 'elastic energy' quadratic form is
the inner product of stress and strain:

(A~e, e)= (Ki- Lu)(tr e)2 +2ujjej 2  (2.2)

d/

A structure which mixes the two materials will have a spatially varying
Hooke's law, equal to either A 1 or A. at each material point x. Introducing
a parameter e, representing (at least in the periodic and random cases) the
length scale of the microstructure, the spatially varying Hooke's law is

A'(x) = t(x)A 1 + X'2'x)A 2  (2.3)

where

u I on the set occupied by material

elsewhere l(2.4)

so that X' =I X'. By definition the structure is periodic (with cubic)
symmetry) if

Xe(x),=Xe(-) for some function X e(y)+
taking only the values 0 and 1, defined for all y e Rd

and periodic in each component of y with period 1. (2.5)

An example would be a periodic array of spherical inclusions centered on
a cubic lattice of mesh e, each sphere having radius ea (p <). In the random
case there is an additional variable c, belonging to a suitable probability
space:

(x, (,o) = Xj( x o) for some stochastic process -*X,( y, co),
defined for y c Rd and w in a probability space, and taking
only the values 0 and 1. It is required that X be translation
invariant, in the sense that c-i(y+c, co) gives the
same stochastic process for each c e Rd. Furthermore, the
translations are assumed to be ergodic, so that ensemble
averaging is equivalent to spatial averaging. (2.6)

An example would be a family of (possibly overlapping) spherical inclusions
of radius ap whose centers have a multidimensional Poisson distribution,
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the expected number of balls in a unit-sized region being of order e -' . The
hypotheses (2.5) or (2.6) specify rather precisely the character of the fine
scale structure. The G-convergence approach, by contrast, makes no such
hypothesis:

t (x) is any family of functions taking only the values 0
and 1, parametrized by s--0, and e2 = 1 -X. (2.7)

It is specifically not assumed in (2.7) that s represents the length scale of the
microstructure: even a sequence which has no clear separation of scales is
permitted. Clearly (2.7) includes both the periodic case and the random one;
indeed, in our opinion it includes any reasonable notion of a linearly elastic
composite obtained by mixing two materials (with perfect bonding at all
material interfaces).

The tensor of effective moduli A* is simply the Hooke's law tensor of the
composite. It represents the limiting behavior of the mixture as e--0. This
means that for any (-independent) load f, the associated elastostatic
displacement uW-which solves the equilibrium equations

a = Ate

eli =1 (LU + U) (2.8)
2 a\Ix, ax,

div a' =f

with an appropriate boundary condition-converges as e---O to u*, the
solution of the corresponding system with A' replaced by A*. The starting
point of the mathematical theory is the existence of effective moduli. In the
spatially periodic and stationary stochastic contexts (2.5), (2.6), translation
invariance assures that the tensor A* of effective moduli is constant. For
periodic composites it can be given in terms of the solutions of certain
canonical 'cell problems', see for example, Refs. 8, 60, but we prefer this
variational characterization, cf. Ref. 64:

(A* , ) = inff (,(y)[ + e(0)], + e(O)) dy (2.9)0 fQ

in which

A(y;=X1 (y)A, +X 2(y)A 2  (2.10)

Q = [0, 1]d is the unit cell of the perodic structure, 0 varies over Q-periodic
displacement fields, and e(4)=(VqO +VOT) is the linearized strain as-
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sociated to 0. An entirely analogous formula is available in the random
case, cf. Refs. 19, 33, 55, 70:

(A*c, )= inf E[(Ae, e)] (2.11)
E(e) -

in which E represents the ensemble average and e ranges over stationary,
random strain fields with mean value . In the more general G-convergence
setting (2.7) there is no hypothesis of translation invariance, so the tensor of
effective moduli A*(x) can vary with x. Moreover, there is obviously not
enough structure to give a formula as explicit as (2.9) or (2.11). But it is
nevertheless true that for any sequence Xf as in (2.7) there is a subsequence
e'--O for which there exists a limiting tensor of effective moduli A*(x), see
for example Refs. 48, 62, 65, 71.

We shall be interested in bounds for A* in terms of the volume fractions
of the component materials, so let us note here how to express these volume
fractions in each of the different settings. For the periodic composite (2.5)
the volume fraction of material i is the proportion of the period cell
occupied by it:

Oj= foXi(y)dy (2.12)

Similarly, in the stationary, random case (2.6) it is the expected value of
MY(Y, 0):

0i = E(Xi) (2.13)

In the G-convergence context (2.7) it is instead given by the L "-weak* limit

Oi(x) = wk* lim X (x) (2.14)

no longer necessarily constant, defined by the property that

f xf(x)g(x) dx - f O(x)g(x) dx (2.15)

for continuous functions g.
These notions of effective moduli are easily seen to be equivalent to the

operational definitions more commonly used in materials science, based on
the average stress and strain or average elastic energy in a physical domain
that is large compared with the microstructure but small compared with the
length scale of the loads and boundary conditions, see for example, Refs. 22,
24. They are important for the development of a proper mathematical
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theory, because they make it possible to give fully rigorous proofs of results
about effective moduli. But why should they be of interest to a materials
scientist? One answer lies in the following 'density' result:I 6 if an algebraic
relation between the tensor of effective moduli and the component volume
fractions holds for all spatially periodic composites (or for all stationary,
stochastic composites), then it holds in the more general context of
G-convergence as well. Thus, for bounds on effective moduli in terms of
volume fractions alone, neither long-range disorder nor a definite separation of
scales is relevant. This resolves a point which has been the object of
considerable controversy in the literature, see for example, Ref. 22.

3. NEW METHODS FOR BOUNDING EFFECTIVE MODULI

A typical goal of the new mathematical theory is the so-called G-closure
problem: find the precise set of Hooke's laws A* achievable by mixing two
given isotropic, elastic materials in specified proportions. The motivation
comes from applications to structural optimization, as we shall explain in
Section 5. The special case when A* is isotropic was considered by Hashin
and Shtrikman,2 3 under the further hypothesis that the component mater-
ials are well-ordered i.e. that

/i1 </p2 , Kl1 ! 2  (3.1)
They gave upper and lower bounds for the effective bulk and shear moduli,
K* and p*, which are now known to be simultaneously achievable.'"' An
improvement of the Hashin-Shtrikman bounds can be found in Refs. 10
and 47, but the precise set of attainable isotropic composites is still not
known. In any event, results of this kind-concerning A* with specified
symmetry-are not adequate for applications to structural optimization,
since the best composites for use in an optimal structure can (and generally
will) be fully anisotropic. While the complete solution of the G-closure
problem seems beyond the reach of current methods, the analogues of the
Hashin-Shtrikman bounds on i* and p* are now understood for fully
anisotropic composites.3' 4"45 In particular, we now know those parts of the
boundary of the G-closure which represent the 'strongest' and the 'weakest'
anisotropic composites.

In the course of exploring these and other bounds for effective moduli,
a number of powerful new tools have been introduced. The well-known
Hashin-Shtrikman variational principles have been applied in new
ways,3' 4

.
26' 34' 45 and new variational principles have been introduced,
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obtained from more classical ones by the addition of a quadratic
null-Lagrangian.5' 2 ' In addition, entirely new approaches have been
introduced: one is based on an equivalence between bounds for effective
moduli and the lower semicontinuity of certain variational func-
tionals;30 ' 32

.
63 another uses the fact that the effective moduli depend

analytically on the component properties;9' 19'2 5 '44 a third uses 'com-
pensated compactness' to construct certain lower semicontinuous func-
tionals, 7 .18.35 37,6 6 and a fourth makes use of Hilbert space decomposi-
tions and continued fractions.' 3 (These references represent a mere
sampling of the relevant literature in each area.) The interested reader will
find several of these new methods applied to a single problem in
a self-contained manner in Ref. 27. The power and limitations of these
various methods are just beginning to be understood, as are the relation-
ships among them.' 6

To convey some of the flavor of these new developments, we present in
detail one of the recently established bounds, an upper bound on the elastic
energy quadratic form. There is of course a well-known bound due to
Paul:

56

(A ,(A, + 0 2 (A 2 , ) (3.2)

where 0i is the volume fraction of the ith material, i = 1,2. This bound is
sharp, in the sense that for certain choices of the 'average strain' there is
a microstructure whose associated A* achieves equality in (3.2). However,
for most choices of (3.2) is not saturated by any composite; therefore
a better bound

(A* ,)<F(, 1,02,11,02, KI, K2, (3.3)

is possible. We shall in fact prove the optimal bound of this type, in other
words one which is saturated, for each , by an appropriately chosen
mixture of the two given materials. The method, which is based on the
Hashin-Shtrikman variational principle, requires that the component
materials be well ordered. Our presentation follows that of Ref. 26;
equivalent results can be found presented somewhat differently in Refs. 3,4
and 45. The function F on the right of (3.3) is given by (3.16) below, as the
extremal value of a finite-dimensional mathematical programming
problem.

As discussed in Section 2, it is sufficient to prove the bound for spatially
periodic composites. We may therefore fix Q = [0, 1]' as the period cell; the
microstructure is determined by the indicator functions X,(y) and X2(y)=
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x 1(y), y e Q, constrained by the given volume fractions (2.12); and the
effective Hooke's law is determined by (2.9).

The first step is to derive the Hashin-Shtrikman variational principle:

(A* , ) -2{(a , + e(O))xjdy

I.
+ ((A2-Aj)- 'aa)XjdY

+f (A 2( + e(4))), + e(4))dy (3.4)

for any Q-periodic displacement field 4, and any Q-periodic field of
symmetric tensors a. The proof is elementary: expanding the pointwise
inequality

J(A2 - A ) ( + e()))- (A 2 -A 1)- / 2>0 (3.5)

and multiplying by X, gives
-)XI((A2-Aj)( +e(4))), + e()))-<

- 2(a, + e(4)))X + Xj((A2 -Aj)-'a, a) (3.6)

The left side equals
((A - A 2)( +e(), + e(4))) (3.7)

therefore integrating over Q and applying (2.9) we conclude (3.4).
The next step is to specialize to constant a, and to evaluate the integrals in

(3.4) wherever possible. This gives

((A* - A 2 ) , ) + 201 (a, )-0 1 ((A2 - A1 ) -'a, a)

< - 2 f (a 1, e(4))dY + f (A 2 e(4)),e(4))dy (3.8)

for any Q-periodic displacement field q$.
The third step is to minimize the expression on the right over 4. This

amounts to solving the elastostatic equilibrium equation

div(A 2 e(o)) - div(aX 1 ) = 0 (3.9)

with a periodic boundary condition. It is convenient to use Fourier analysis:
since A 2 and a are constant, (3.9) determines the Fourier transform of 0P at
each frequency k c Zd directly in terms of the transform of X1 at the same
frequency. After some algebra, one finds that the extremal value of the right
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side of (3.8) is

111(k)2 (3.10)

where
xl(y)= E e 2xik'Y k (3.11)

kEZ
d

and for any unit vector v e RQfv) is the 'degenerate Hooke's law' defined by

fiv)a = d (ty, *~ (D v
dK2 + 2(d- 1),2

1
+-[(av) 0 v-( av, v)v 0 v] (3.12)

/U2

Here a is any symmetric tensor, and we use the notation vCw=
(v®w+ w®v) for the symmetric tensor product of two vectors in Rd.
It remains to eliminate the explicit dependence of the bound on X1, which

is after all arbitrary except for the volume fraction constraint. We use this
constraint to see that

fQ(X0 01) 2  =01 (3.13)

whence by Plancherel's theorem

I J(k)12 =0 1 02 (3.14)
k o

This gives a bound on the 'nonlocal' term:

(3.10) < -0102 min (f(v)a,a) (3.15)
IvI=1

Substitution into (3.8) gives a bound on A* which still depends on the
choice of a symmetric tensor a, and minimization over a gives a result of the
desired form (A* , ) < F, with

F = (A2  , )+ 01 "m { - 2(a, ) + ((A2 - A)- 1r, a)

-02 min (f(v)a,u)} (3.16)
IvI=1

Our interest in this bound lies in the fact that it is the best possible bound
for (A* , ) in terms of the given parameters , 01, 02 = 1 - 01, and the bulk
and shear moduli of the component materials K1 < K 2, P 1 < P2. This will be

no
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proved in the next section, as an application of the formula for the effective
behavior of a sequentially laminated composite.

4. CONSTRUCTION OF MIXTURES WITH EXPLICITLY
COMPUTABLE EFFECTIVE MODULI

For most microstructures there is no explicit, algebraic formula for the
tensor of effective moduli A*; one must make do instead with a variational
principle such as (2.9) or (2.11), or perhaps with the partial differential
equation characterizing its extremal. If this were the only available tool it
would be virtually impossible to establish the optimality of any bound!
Fortunately there are certain, rather special microstructures for which the
effective moduli are computable; and, remarkably, this class of composites
is rich enough to demonstrate the optimality of a variety of bounds,
including (3.3).

There are some simple and more or less classical examples of composites
with explicitly computable properties. One example is that of a layered
microstructure;6'11 '4 ° another is the 'concentric sphere construction',
which was used by Hashin in Ref. 73 to prove the optimality of their bulk
modulus bounds. It is natural enough to iterate such constuctions, for
example layering together two composites each of which has its own
fine-scale structure, obtained perhaps by layering or by a version of the
concentric sphere construction. This idea, which can be found in
Bruggeman's work,11 has been rediscovered by various individuals and
applied to prove the attainability of many different bounds, e.g. Refs. 3-5,
17, 18, 26, 34, 35, 37, 38, 42, 61, 66.

An important new development concerns the attainability of certain
mean field theories. The formulas they predict for the tensor of effective
nmoduli A* were originally intended as approximations, not as exact results.
Nevertheless, it has recently been shown that certain effective medium
theories are exactly attainable by composites with appropriately chosen
microstructures.2 '36 '41 Obviously, this result greatly expands the class of
composites with explicitly computable effective moduli-particularly since
these effective medium theories (the 'coherent potential approximation' and
the 'differential effective medium theory') have been widely studied in the
mechanics literature, see e.g. Refs. 74, 75.

The microstructures that arise from these constructions are, it should be
understood, somewhat idealized materials. They are higly ordered, neither
periodic nor stochastic in character, and they frequently involve multiple
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length scales. It may seem like cheating that we allow the use of such
microstructures to establish the attainability of a bound, whereas the proof
of the bound may make use of a special structure such as periodicity. This is
in fact perfectly legitimate; indeed, it is here that we use the power of the
mathematical theory. The point is that these constructions fit perfectly into
the mathematical context of G-convergence (see especially Ref. 2); therefore,
by the 'density' result mentioned at the end of Section 2, their effective
moduli can be approximated arbitrarily well by those of spatially periodic
composites. Actually, it is quite natural to use the most restrictive possible
setting for proving bounds, and the most general one for showing that they
are achieved.

The remainder of this section is devoted to a discussion of sequentially
laminated composites, and to a proof of the attainability of the new upper
bound (3.3). Closely related ideas and results can be found in Refs. 3, 4, 26,
45. The construction of a sequentially laminated composite is an iterative
procedure, producing a microstructure that has several different length
scales. A laminar composite of rank I is obtained by layering two initially
given materials, specifying the proportion of each and the layer direction,
and using a small parameter s, as the layer thickness. As E,-+0, the elastic
behavior is described by an effective Hooke's law C1 .A laminar composite of
rank 2 is obtained by layering two laminar composites of rank 1, again
specifying the proportion of each and the layer direction, and using another
small parameter ' 2 for the layer thickness. As Ea,e2 --+0 with 1 <<e 2, the
elastic behavior is described by an effective Hooke's law C2 . This process
can clearly be continued indefinitely: the general sequentially laminated
composite of rank r is obtained by layering together two sequentially
laminated composites of rank r - 1. We shall consider here only a special
case, in which one of these two materials is the isotropic one with shear
modulus P2 and bulk modulus K 2 at each successive stage. An elegant, iterative
formula for representing the effective moduli of such a composite was
derived in Ref. 17, following a method developed for scalar equations in Ref.
66. We now give a derivation of this result.

The basic building block is a formula for the effective tensor C cor-
responding to a layered mixture of the isotropic material with Hooke's law
A 2 and a general elastic material with Hooke's law B, using layers
orthogonal to the unit vector v eR', and using proportions P2 and
PB= 1-P2 of A2 and B, respectively:

pB(A 2 -C)-' a=(A2 -B)- Up 2 f(v)a (4.1)

for any symmetric tensor a. Here f(v) is the same degenerate Hooke's law
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that arose in our proof of the bound, defined by (3.12). In writing (4.1) we
have implicitly assumed that A 2 - C and A 2 - B are invertible, when viewed
as symmetric linear maps on the space of symmetric tensors. This is the case
whenever B<A 2, since then C<A 2 as well, by Paul's bound (3.2); this
ordering hypothesis will be sufficient for our purposes, since we are
concerned with mixtures of two well-ordered isotropic materials, i.e. (3.1)
holds. (There is a version of (4.1) without invertibility hypotheses, see for
example Ref. 17.) To prove (4.1), one must of course begin with a charac-
terization of C. In a layered composite of the type under consideration, the
local values of the stress and strain are essentially constant within each
component. Therefore, arguing for example as in Ref. 40, the calculation of
C given is easily reduced to this algebraic problem: find a pair of
symmetric matrices 2 and B (representing the strain in the layers occupied
by materials A 2 and B respectively) such that

P2 2 + PB B

B- 2 =V 0 W for some weR" (4.2a-c)

(A2  2-B4)V=0

The first relation says that is the average strain; the second is the
consistency condition for the existence of a deformation with the specified
piecewise constant strain (recall that v 0 w = (v 9 w + w ® v)/2); and the
third represents the continuity of the normal stress at the layer interface. In
terms of these quantities, C is determined by

C = P 2 A 2  2 + PBBNB (4.2d)

which identifies it as the average stress. The solution of (4.2a-d) is easiest
to represent in terms of a=(A2 -C) . One calculates that 2 and , are
given in terms of a by

B=pV(A 2 -B)-'a, 2=4-V0W (4.3)

where w e R" is chosen so that

pBA 2(v 0 w)=2(av) 0 v-(av,v)v 0 v (4.4)

whence

p[A2 (v 0 w)] V = cV (4.5)

The unique w satisfying (4.4) is

(av v)v + '(av - (Cv, v)v) (4.6)
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and it has the property that

PBv ) W=f(v)a (4.7)

with f(v) defined by (3.12). Therefore

(A 2 -C)-f'U=pBB+p 2 2

=B-P2 V 0w
=B p '(A 2 -B)-' 0 a-P 'P ,f(v)a (4.8)

which is precisely the desired formula (4.1).
Now consider a sequence C o, C 1, C 2,... of effective tensors such that

Co = A1 represents an isotropic material with bulk

modulus Kc1 and shear modulus p, (4.9a)

and, for r > 1,

C, is obtained by layering A2 with C,_. 1 in volume
fractions a, and (I -,) respectively, using the unit
vector v, as the layer normal. (4.9b)

Evidently, C, represents the effective behavior of a certain sequentially
laminated composite of rank r. The volume fraction of A2 in C, is

f,=1-fi 1-),r> 1; #0=0 (4.10)

i= 1

A formula for C, is easily obtained by iterating (4.1):

(1-f,)(A2 -C-'=(A 2 -A,) 1 - (fi,-f 1 )f(v,) (4.11)
i=l1

Let us terminate this process at r = N, and write

02 =fiN = overall volume fraction of A 2

01 = 1 - N =overall volume fraction of A, (4.12)

A*= CN=effective Hooke's law of the associated rank N
composite.

It is easy to see that the sequence

mi = (fi- fi- )/PN, 1 < i < N (4.13)

can be any nonnegative sequence which sums to 1, by making an
appropriate choice of the parameters {,}. Thus we have shown that for any
integer N > 1, any unit vectors {v,} in Rd , any real numbers {mj}j= I with
0 < m, < I and 2mi = 1 and any real number 02,0 < 02 < 1, there is a sequen-
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tially laminated composite made by mixing A 1 and A 2 as in (4.9), using overall
volume fractions 0, = 1 -02 and 02 respectively, whose effective Hooke's law
A* is characterized by

N0,(A2-A*)-'=(A2-Aj)-1-02 Y- MAOvi (4.14)
J=1

We now apply this construction to establish the optimality of the new
upper bound (3.16) Our task is to show that for each symmetric tensor

there is a choice of the parameters {v, mi } such that A*, defined by (4.14),
satisfies (A* , )=F with F as in (3.16). Now, (3.16) gives F in terms of
a mathematical programming problem

min {-2(a, )+((A2 -A 1)-a,a)-02 min (f(v)a,a)} (4.15)
a IVI=1

over symmetric tensors a, so it is reasonable to expect the proper choices of
{vi,mi} to emerge from the optimality conditions for (4.15). Since the last
term is not a smooth function of a, it is natural to use the methods of
Inonsmooth analysis', see for example Ref. 15. To this end we rewrite (4.15)
as

min {-2(a, ) + g()} (4.16)

with

g(a) = max ((A 2 - 
A 1- 02f(v)U, a) (4.17)

IvI=1

For each fixed v the expression on the right is a positive, quadratic function
of a (one way to establish positivity is to make use of(4.1)). Therefore g is
convex, and the optimality condition for (4.17) is that for any extremal a*

2 e ag(a*) (4.18)

where ag(a*) is the subdifferential of g at a* (see for example Ref. 15,
2.3.1-2.3.3 and Corollary 1, §2.3). Moreover, ag(a*) is the closed convex hull
of the differentials of the various quadratic forms in (4.17) as v ranges over
all extremals (see for example, Ref. 15, §2.8, Corollary 1). Since the space of
symmetric tensors is finite dimensional, each element of the closed convex
hull is in fact a convex combination of finitely many extreme points.
Therefore the optimality condition (4.18) becomes

N

=(A2- Al)- 7*-02 Em~if)* (4.19)
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with mi >0, Emi= 1, Ivl = 1, N< o, and

g(a*)=((A2 -A 1 )-' 1 *,*) - 0
2(f( i)g *, a *), 1 <i N (4.20)

Comparing (4.19) with (4.14), we see that

= 0(A 2 - A*)- a. (4.21)

where A* is the sequentially laminated composite of rank N constructed
using {mi, vij,. We claim that this A* satisfies (A* c,)=F. Indeed, the
value of F is

F=(A2  , )+ 0, { -2(a*,)+&g(a*)} (4.22)

using (3.16) and the fact that a* i extremal for (4.15). We have

(a*, ) = g(a*) (4.23)

by (4.19) and (4.20), so (4.22) becomes

F=(A2  , )0 1(a*, ) (4.24)

But 01 a* =(A 2 - A*) by (4.21), and substitution gives the desired result
F=(A* ,

5. APPLICATIONS TO STRUCTURAL OPTIMIZATION

The recent interest in optimal bounds on the effective moduli of composites
has been stimulated in large part by applications to structural optimization,
see for example, Refs. 1, 28, 38, 39, 49, 50, 67. That discipline is concerned
with choosing the geometry or composition of a load-bearing structure so
as to use the available materials as efficiently as possible. The subject has
a rich history and an extensive literature; books and articles reviewing
various aspects include Refs. 7, 21, 53, 57. Initially attention was focused
primarily on analytical methods-optimality conditions, conformal mapp-
ing, isoperimetric inequalities, and so forth. More recently, with the
growing feasibility of large scale computing, attention has naturally been
turned to methods for the direct, numerical calculation of optimal
structures.

To fix ideas, let us consider a particular problem involving shape
optimization and plane stress. We begin with a homogeneous, isotropic
elastic body occupying a region f0 c R2 , loaded along its boundary 00 by
a specified traction f We desire to lighten this body by removing material
from a subset H c (), consisting of one or more holes of arbitrary size and
shape. The goal is to achieve the minimum possible weight, i.e. to maximize
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the area of the 'holes' H, subject to a performance constraint on the stress aH
or displacement u, of the resulting elastic structure. Typical constraints are

that the work done by the load ('compliance')

be not too large: ff ul*-fC; or (5.1a)

that the average displacement on a subdomain

0, be not too large: f IluH1<C; or (5.1 b)

that the pointwise maximum stress be not too
large: sup 1aH(x) 1 1< C (5.1c)

X60

Highly efficient and sophisticated algorithms have been developed for
the numerical solution of such problems; Ref. 21 gives an excellent review.
Typically, one begins by deciding how many holes to consider. Each hole
boundary is determined by finitely many points, for example using splines.
The resulting domain is triangulated, and the equations of elastostatics are
modeled as a finite system of linear equations using the finite element
method. The design problem is thus transformed to a (highly nonlinear!)
mathematical programming problem, and one can seek an 'optimal'
design-or at least an improvement of a given design-using steepest
descent, or perhaps some more sophisticated method.

Though its utility is beyond dispute, this 'conventional' approach has one
troublesome aspect: the gross features of the design-especially, the
number of holes-must be chosen at the outset; they are not a part of the
optimization. Thus the output is likely to be a local optimum, or at best an
optimum among all designs with a specified number of holes. In fact,
numerical attempts at global optimization for related model problems have
led in some cases to 'optimal' designs that vary on the scale of the mesh size
itself, with no convergence evident as the mesh size tends to zero! '-3 This
phenomenon is now well understood. In the context of shape optimization,
the situation is as follows: consider first the best design with one hole, then
that with two, and so forth. As the number of holes gets larger the
performance may get better (depending of course, on the specific problem
under consideration). In the limit of infinitely many holes one thus finds
a global optimum which is not a 'conventional' design at all, but instead
a structure made from composite materials obtained by perforation.
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With hindsight it seems almost obvious: if one is prepared to consider
designs with many small holes, then one ought also to consider their limits.
We thus arrive at a new approach to structural optimization: if the goal is to
find a global optimum then it is best to work from the start in the class of all
structures made up of composite materials obtainable by perforation from the
one initially given. It should be emphasized that the underlying problem is
not being changed, since we allow only composites achievable by perfora-
tion, and we are careful to model them properly. However, the resulting
optimization problem looks quite different: whereas initially we were
considering structures made up of a single material (or the absence thereof),
now we propose to allow a continuum of materials-each representing
a perforated composite with a different microscopic geometry. (As a tech-
nical matter, the mathematical theory discussed in the preceding sections
does not quite apply to perforated composites, since it requires j >0 and
Ki >0. This can be circumvented, at least for compliance optimization
problems, by the methods of Refs. 30,32. Alternatively, we can simply treat
the 'holes' as though they were filled with a very weak elastic material.)

The introduction of composites as generalized designs-sometimes
called the relaxation of the design problem-has been studied extensively
by several groups over the past ten years, see for example, Refs. 20, 30, 38,
50,52,54,58, 59,67. From a theoretical standpoint, the principal advantage
of relaxation is that it assures the existence of an optimal design; roughly,
this means that a numerical solution of the relaxed problem will converge as
the mesh size tends to zero. There is also a practical advantage, based on the
fact that the initial material and the absence of material are included (as
extreme cases) among the candidate composites: evidently, for a given finite
element subdivision the introduction of composites serves to enlarge the
design space and hence to improve the performance of a numerically
obtained optimal design. Moreover, precisely because it has the effect
(within a finite element context) of enlarging the design space, the process of
relaxation can destroy local minima-making it easier to locate a globally
optimal design. Finally, since the relaxed problem is known to have
a solution, it is meaningful to use the associated optimality conditions; this
has led in some contexts to closed-form examples of optimal designs
making use of composites, for example, Refs. 29-31. The method of
relaxation has its limitations: the optimal designs obtained this way may be
difficult or even impossible to manufacture, because of the presence of
composites. Even so, these solutions can be used as benchmarks against
which to compare the output of a more conventional algorithm.

The process of relaxation is conceptually simple: we must simply
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reformulate the design problem in a form that permits perforated
composites as admissible materials. The actual execution, however, is not
so simple: it requires specific knowledge about the properties of the relevant
composites. For a local performance criterion such as the maximum stress
(5. 1 c) we would have to know optimal bounds relating the effective Hooke's
law, the density of holes, the average stress, and the local maximum stress in
a general perforated composite. This represents a challenge for the future:
no such result is presently known. For a performance criterion involving
some integral of the displacement, such as (5.16), it would suffice to know
the solution of the G-closure problem-in other words, to know the class of
all effective Hooke's laws obtainable using perforations that remove a given
fraction of the material. The analogous problem has been solved for scalar
equations,37 66 and it has been applied to solve various optimization
problems involving conductivity, see for example, Refs. 12, 20, 30, 38, 50, 67;
but unfortunately the G-closure problem for elasticity remains open at this
time except in certain rather special cases.34 35 However, problems
involving compliance constraints such as (5.1a) do not require the full
solution of the G-closure problem; rather, bounds of the type presented in
Sections 3 and 4 are sufficient. To explain why, we note that it is not really
necessary to consider all composites; one might as well consider just those
that can actually occur in an optimal design. Now, by Green's formula the
compliance is equal to the internal elastic energy:

(5.2) f u f= f (A(x)e(u), e(u)) dx

where A(x) is the spatially varying tensor of elastic moduli and u the
associated displacement. A structure which minimizes weight for fixed
compliance will also minimize compliance for given weight; it is not hard to
see from this that A(x) should maximize (Ae(u),e(u)) at each point x in an
optimal design. Thus the values that A(x) can take in an optimal design are
restricted to those that maximize (A , ) for some tensor .

The preceding discussion shows that we have enough information to
solve optimal design problems with compliance constraints, but it falls
short of specifying an algorithm to do so. How, operationally, should one
proceed? Following Ref. 30, we advocate an algorithm based on the
principle of minimum complementary energy, a variational principle for the
stress whose extremal value is equal to the compliance:

f{u'f= min (A -(x)a,a) dx (5.3)
in div a=O,.n.= f f!
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Introducing a Lagrange multiplier for the performance constraint (5.1a)
our design problem is

MINdSi, S {WEIGHT + A COMPLIANCE} (5.4)

The outer minimization over designs is quantified by introducing functions
0(x) and A(x), the density and effective Hooke's law, constrained by the
pointwise conditions

0 < 0 < 1, and A is the effective Hooke's law of a
perforated composite obtained by removing volume
fraction I - 0 of the initially given material. (5.5)

The compliance is itself a minimum, according to (5.3), so (5.4) becomes

min{f (x)dx+A, min J,(A-l(x)aa)dxJ (5.6)
OA I ,di, a=O ..n= f f

The ordcr of minimization is unimportant, and switching it gives

rain f , (a) dx (5.7)
div a=Ov-n=f fn

with

e,(a) = min [0 + )(A - 1 a, a)] (5.8)
0.A

The minimization in (5.8) is over real numbers 0 and tensors A, constrained
by (5.5). This is slightly different from the problem we treated in Sections
3 and 4, but it can be solved by exactly the same method-as can
considerably more general problems, for example the analogue of (518)
when there are compliance constraints under two or more loads.

The next step, of course, is to evaluate (5.8) analytically or numerically,
and to carry out the optimization by solving (5.7) for realistic design
problems. Work in these directions is currently in progress. The minimiza-
tion of (5.8) was executed in Ref. 30 for the special case of an elastic material
in plane stress with Poisson's ratio zero, i.e. when U = K = jE, where E is
Young's modulus, using a different method, based on quasiconvexification.
The answer is surprisingly simple: scaling A = E = I for simplicity,

fI +al"l + U'2, ltall +1a 21> 1

.2 (al1+1a 2 )-2jala 21, 1al1+1a2 1<1l

where a, and U2 are the principal stresses (the eigenvalues of a).
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(FEIM), 102-4new methods for bounding of, applications of, 108160-4 finite element mesh used, 103physical equivalent of, 159 global interpretation of, 106-7Eigenvalue problems, FEIM used for, identification with power method,105-6 
104-5
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Finite element interactive method Interface

(FEIM) -contd. crack considered by FEIM, 103, 107

procedure used, 102-3 debonding of, 9, 14

verification of, 107-8 time response affected by, 16

Fourier analysis, 162 electrochemical interface, 7

Fracture mechanics, 55-8 load transfer across, 8-9

energy release rate approach, 55-6 mechanical interface, 7

progressive crack analysis, 96-7 oscillation in energy due to loading,

strain energy density approach, 8-9

57-8 thermal - mechanical interaction of,

7-9
Interlaminar shear stress, 151

Intermolecular forces, 7
G-closure problem, 160 Irregularly shaped reinforcement, 26,
G-convergence approach, 156, 158 46-7

see also Homogenization isotropic laminates, analysis of,
Graphite - epoxy composites 14s-51

impact damage, 57

orthotropic elastic properties, 54

progressive cracking of, 97-8 Kirlian photography, 19

see also Carbon • see also Electromagnetic discharge

Group representation theory imaging (EDI) technique

methods, 75

Layered microstructure composites,

Hashin - Shtrikman variational 164
principle, 160 Linear elastic fracture mechanics

derivation of, 162 (LEFM), 62

method of bounding based on, 161 brittle/plastic failure transition, 123

Hilbert formulation, rigid inclusion impact damage calculations, 143

problem, 36-7 Linear inclusions, 29-31

Homogenization, 156
concrete compared with plexiglass,

130 Macro, meaning of term, 17

Hypocycloidal inclusions, 32-4 Macro-approach, 25

Mass conservation equation. 50

Material testing methods

Impact damage inadequacy of, 3

energy available for, 136-7 see also Non-destructive testing

mathematical modelling of Mathematical modelling

difficulties encountered, 135 failure mechanisms, 135

residual strength indications, impact damage, 135-44

144-5 recent progress in, 155-73

theory used, 135-44 Matrix

permanent versus maximum cracking of, 14

indentation, 139 time response affected by, 16

Impact damaged laminate, analysis of, thermal - mechanical interaction of,

57 
5-7

Inclusions. See Rigid inclusions transverse cracking in, 91-5
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Matrix form, constitutive equation, Poly (ether ether ketone) (PEEK),
71, 73 carbon fibre reinforcedMechanical damage model, 115-16 composite, mixed modeMechanical interface, 7 failure of, 69Micro-approach, 26 Poly (methyl methacrylate) (PMMA),

Minimum complementary energy, temperature changes under
principle of, 172 cyclic compression loading,

Minimum strain energy density 129
criterion, 28-9, 30 Portland cement concrete,Mixed mode failure compression loading of,

analytical methods used, 62-5 126-7
experimental results obtained, Power Sweep method, FEIM

67-70 compared with, 104-5
test configurations used, 65-6 Product tables

Moisture, thermomechanical transverse isotropy groups, 79
behaviour affected by, 58 T1 , 80

Momentum conservation equation, 50 T2, 81
Multiphase materials, failure modes T3, 83

of, 26 T4, 85
T,, 86

Progressive transverse cracking
Non-destructive testing (NDT) analysis of, 95-8

techniques, 19 experimental data for graphite-
epoxy composites, 97-8

Optimal structures, calculation of, 169 Random composite, meaning of term,
156

Random structure, meaning of term,
157Participants listed, 179-81 Rayleigh quotient approach, 105

Paul's bound, 161, 166 Relaxation techniques, 171
Perforated composites, 169-72 advantages of, 171
Periodic composite, meaning of term, execution of, 172

156 Residual strength
Periodic structure, meaning of term, impact-damaged plates, 144-5

157 thick plates, 144Planar isotropic materials, impact thin plates, 145
damage modelling for, Rigid inclusions
134-45 astroidal inclusions, 32Plastic collapse, dimensional cuspidal-cornered, 27-34
transition to brittle fracture, minimum strain energy density
112, 113-15,123 criterion used, 28-9Plemelj function, 37 stress field of, 27-8

Plexiglass, temperature changes under hypocycloidal inclusions, 32-4
cyclic compression loading, linear inclusions, 29-31129 partially bonded, 35-44

Polycarbonate, temperature change Hilbert formulation of, 36-7
intension, 6 local stress distribution for, 40-2
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partially bonded -- contd. Thermomechanical behavior, 4-9,
statement of problem, 35-6 49-50
unknown coefficients determined basic equations for,. 50-3

for, 37-9 constitutive equation for, 50
square inclusions, 42-3 fiber, 4-5
triangular inclusions, 43-4 implications for cyclic stressing,

53-5,125-30
Scale of observation, failure modes interface, 7-9

affected by, 16-18 matrix, 5-7
Semi-elliptical surface crack, impact see also Cooling - heating effect

damage resulting in, 143 Thick composite plates
Shear lag theory, 91, 95 impact on
Singularity fields, 102 displacement - time history for, 136
Size force - time history for, 136

collapse/fracture mode affected by, residual strength for, 144
112, 113-15,123 Thin composite plates

ductility affected by, 125 impact on
strength affected by, 124-5 displacement - time history for,
toughness affected by, 124-5 137

Spherical inclusions, 157 force - time history for, 137
Spherical indentor residual strength for, 145

impact damage caused by, 142-3 loading and unloading of, 138
stresses caused by, 141 Time response characteristics, 15-16
surface crack caused by, 143 Titanium, aluminium - vanadium

Square inclusions, 42-3 alloy, thermoelastic
Strain energy density characteristics, 54

factor Toughness, size effects on, 124-5
crack growth affected by size, 122 Translation invariance, 157, 159
critical value of, 120 Transverse cracking, 91-5
dimensionless representation of, progressive cracking, analysis of,

121 95-8
theory, 57-8 Transverse isotropy groups

centre cracked slab in tension definition of, 72
analysed using, 119-24 group TI, 80

cooling - heating effects transformation of vector under,
predicted by, 5, 6, 7, 57-8 75-6

crack growth analysed using, 118 group T2, 80-2
strain-softening behaviour and, group T3, 82

115-18 group 74, 82, 84
Strain-softening behaviour, 115-18 group Ts, 84-5
Strength, size effects on, 124-5 irreducible representations for,
Structural optimization, applications 79-86

of effective moduli to, Transversely isotropic materials
169-73 axial vector-valued function for,

Substructuring method, FEIM as, 106 88-9
constitutive expressions for, 73-9

applications of, 87-90
T300/934 laminates, progressive polar vector-valued function for,

cracking of, 98 87-8
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Transversely isotropic materials Unidirectional fibre reinforced
-- contd. composites -contd.

second-order tensor-valued mixed mode failure of, 67-70
function for, 87

Triangular inclusions, 43-4
Van der Waals bonds, 7Variation principles, 160--1

Unidirectional fibre reinforced

composites
failure modes in, 10 Weight minimization, 169-73


